当前位置:首页 > 单片机 > 单片机
[导读]在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。①HSI是高速内部时钟,RC振荡器,频率为8MHz。②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。③LSI是低速内部时钟,RC

 

在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

①HSI是高速内部时钟,RC振荡器,频率为8MHz。

②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

③LSI是低速内部时钟,RC振荡器,频率为40kHz。

④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

 

在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法

如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:


1)对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
2)对于少于100脚的产品,有2种接法:
2.1)OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能。
2.2)分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面2.1)节省2个外部电阻。

 

使用HSE时钟,程序设置时钟参数流程:
1、将RCC寄存器重新设置为默认值RCC_DeInit;
2、打开外部高速时钟晶振HSERCC_HSEConfig(RCC_HSE_ON);
3、等待外部高速时钟晶振工作HSEStartUpStatus = RCC_WaitForHSEStartUp();
4、设置AHB时钟RCC_HCLKConfig;
5、设置高速AHB时钟RCC_PCLK2Config;
6、设置低速速AHB时钟RCC_PCLK1Config;
7、设置PLLRCC_PLLConfig;
8、打开PLLRCC_PLLCmd(ENABLE);
9、等待PLL工作while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟RCC_SYSCLKConfig;
11、判断是否PLL是系统时钟while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

 

//另一个版本的分析总结:

在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
①、HSI是高速内部时钟,RC振荡器,频率为8MHz。
②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接
外部时钟源,频率范围为4MHz~16MHz。
③、LSI是低速内部时钟,RC振荡器,频率为40kHz。
④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、
HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最
大不得超过72MHz。

 

其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被
选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源
还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过
RTCSEL[1:0]来选择。

 

STM32中有一个全速功能的USB模块,其串行接口引擎需要
一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获
取,可以选择为1.5分频或者1分频,也就是,当需要使用
USB模块时,PLL必须使能,并且时钟频率配置为48MHz或
72MHz。

 

另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,
可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。

 

系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟
源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最
大频率为72MHz,它通过AHB分频器分频后送给各模块使用,
AHB分频器可选择1、2、4、8、16、64、128、256、512分
频。其中AHB分频器输出的时钟送给5大模块使用:
①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。
②、通过8分频后送给Cortex的系统定时器时钟。
③、直接送给Cortex的空闲运行时钟FCLK。
④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分
频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),
另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器
可选择1或者2倍频,时钟输出供定时器2、3、4使用。
⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分
频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),
另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或
者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有
一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC
分频器可选择为2、4、6、8分频。

 

在以上的时钟输出中,有很多是带使能控制的,例如AHB总线
时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使
用某模块时,记得一定要先使能对应的时钟。

 

需要注意的是定时器的倍频器,当APB的分频为1时,它的倍
频值为1,否则它的倍频值就为2。

 

连接在APB1(低速外设)上的设备有:电源接口、备份接口、
CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、
Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的
48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只
是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时
钟应该是由APB1提供的。

 

连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、
ADC1、ADC2、所有普通IO口(PA~PE)、第二功能IO口。

 

下图是STM32用户手册中的时钟系统结构图,通过该图可以从
总体上掌握STM32的时钟系统。

 

 

标签:

 

下面是TM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)

 

*******************************************************************************

* Function Name: RCC_Configuration

* Description:RCC配置(使用外部8MHz晶振)

* Input: 无

* Output: 无

* Return: 无

*******************************************************************************

void RCC_Configuration(void)

{

//将外设RCC寄存器重设为缺省值

RCC_DeInit();

 

//设置外部高速晶振(HSE)

RCC_HSEConfig(RCC_HSE_ON);//RCC_HSE_ON——HSE晶振打开(ON)

 

//等待HSE起振

HSEStartUpStatus = RCC_WaitForHSEStartUp();

 

if(HSEStartUpStatus == SUCCESS)//SUCCESS:HSE晶振稳定且就绪

{

//设置AHB时钟(HCLK)

RCC_HCLKConfig(RCC_SYSCLK_Div1);//RCC_SYSCLK_Div1——AHB时钟 = 系统时钟

 

 

RCC_PCLK2Config(RCC_HCLK_Div1);//RCC_HCLK_Div1——APB2时钟 = HCLK

 

//设置低速AHB时钟(PCLK1)

RCC_PCLK1Config(RCC_HCLK_Div2);//RCC_HCLK_Div2——APB1时钟 = HCLK / 2

 

 

FLASH_SetLatency(FLASH_Latency_2);//FLASH_Latency_22延时周期

 

//选择FLASH预取指缓存的模式

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);// 预取指缓存使能

 

//设置PLL时钟源及倍频系数

RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

// PLL的输入时钟 = HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9

 

//使能PLL

RCC_PLLCmd(ENABLE);

 

//检查指定的RCC标志位(PLL准备好标志)设置与否

while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)

{

}

 

//设置系统时钟(SYSCLK)

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

//RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟

 

// PLL返回用作系统时钟的时钟源

while(RCC_GetSYSCLKSource() != 0x08)//0x08:PLL作为系统时钟

{

}

}

 

//使能或者失能APB2外设时钟

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |

RCC_APB2Periph_GPIOC , ENABLE);

//RCC_APB2Periph_GPIOAGPIOA时钟

//RCC_APB2Periph_GPIOBGPIOB时钟

//RCC_APB2Periph_GPIOCGPIOC时钟

//RCC_APB2Periph_GPIODGPIOD时钟

}

 

 

 

设置使用内部晶振。

void RCC_Configuration(void)

 

{

 

ErrorStatus HSEStartUpStatus;

 

//将外设 RCC寄存器重设为缺省值

 

RCC_DeInit();

 

RCC_HSICmd(ENABLE);

 

while(RCC_GetFlagStatus(RCC_FLAG_HSIRDY) == RESET)

 

{

 

}

 

if(1)

 

{

 

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

 

FLASH_SetLatency(FLASH_Latency_2);

 

RCC_HCLKConfig(RCC_SYSCLK_Div1);

 

RCC_PCLK2Config(RCC_HCLK_Div1);

 

RCC_PCLK1Config(RCC_HCLK_Div2);

 

//设置 PLL 时钟源及倍频系数

 

RCC_PLLConfig(RCC_PLLSource_HSI_Div2, RCC_PLLMul_8);

 

//使能或者失能 PLL,这个参数可以取:ENABLE或者DISABLE

 

RCC_PLLCmd(ENABLE);//如果PLL被用于系统时钟,那么它不能被失能

 

//等待指定的 RCC 标志位设置成功 等待PLL初始化成功

 

 

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭