当前位置:首页 > 单片机 > 单片机
[导读]上一节,我们讲了在CAP脚上计数,这一节,我们用捕获功能测量CAP引脚上的频率。原理是获取两次下降沿的时间间隔,这个时间间隔即是脉冲信号的周期。新建一个工程,结构如下图所示:在timer.h文件中,加入捕获测频的初

上一节,我们讲了在CAP脚上计数,这一节,我们用捕获功能测量CAP引脚上的频率。原理是获取两次下降沿的时间间隔,这个时间间隔即是脉冲信号的周期。

新建一个工程,结构如下图所示:

在timer.h文件中,加入捕获测频的初始化函数T16B0_CAP_Init()的声明,如下所示:

#ifndef __NXPLPC11xx_TIME_H__

#define __NXPLPC11xx_TIME_H__

extern void T16B0_init(void);

extern void T16B0_delay_ms(uint16_t ms);

extern void T16B0_delay_us(uint16_t us);

extern void T16B0_cnt_init(void);

extern void T16B0_CAP_Init(void);

#endif

在timer.c文件中,加入T16B0_CAP_Init()函数的定义

void T16B0_CAP_Init(void)

{

LPC_SYSCON->SYSAHBCLKCTRL |= (1<<16); // 使能IOCON时钟

LPC_IOCON->PIO0_2 &= ~0x07;

LPC_IOCON->PIO0_2 |= 0x02; /* CT16B0 CAP0 */

LPC_SYSCON->SYSAHBCLKCTRL &= ~(1<<16); // 禁能IOCON时钟

LPC_SYSCON->SYSAHBCLKCTRL |= (0X1<<7); // 使能TIM16B0时钟

LPC_TMR16B0->TCR = 0x02; //复位定时器(bit1:写1复位)

LPC_TMR16B0->PR = SystemCoreClock/100000-1; //使10微妙TC+1

LPC_TMR16B0->IR = 0x1F; //CAP0中断复位

LPC_TMR16B0->CCR = 0x06; // 下降沿中断

LPC_TMR16B0->MR0 = 0XFFFF; // 匹配值

LPC_TMR16B0->MCR = 0X01; // 与MR0匹配产生中断

LPC_TMR16B0->TCR = 0x01;

NVIC_EnableIRQ(TIMER_16_0_IRQn); // 使能CT16B0中断

}

以上语句的说明,基本上都在前面几个章节介绍过了。

第12和13行的配置,是一个“不得不使用的技巧”。原因是LPC1114的定时器没有溢出中断,即当定时器值递增到最大值,再回到0计数,不会产生中断。所以,我们在这里,给匹配寄存器MR0写入定时器的最大值,然后设置定时器与MR0匹配后产生中断,即可实现溢出中断的效果。在这里产生溢出中断,是为了让引脚上没有脉冲信号的时候频率为0。假如没有溢出中断,你做的车速表将停留在刹车一瞬间的车速不归0,这是一件多么悲催的作品!

在main.c中,输入以下代码:

#include “lpc11xx.h”

#include “timer.h”

#include “uart.h”

uint16_t temp; //

uint16_t freq; //

// 非精确延时

void delay_ms(uint16_t ms)

{

uint16_t i,j;

for(i=0;i<5000;i++)

for(j=0;j

}

void CLKOUT_EN(uint8_t CLKOUT_DIV)

{

LPC_SYSCON->PDRUNCFG &= ~(0x1<<6); // 看门狗振荡器时钟上电(bit6)

LPC_SYSCON->WDTOSCCTRL = 0X3F; // 0.6M/2*(1+31)=9375赫兹

LPC_SYSCON->SYSAHBCLKCTRL |= (1<<16); // 使能IOCON时钟

LPC_IOCON->PIO0_1=0XD1; // 把P0.1脚设置为CLKOUT引脚

LPC_SYSCON->SYSAHBCLKCTRL &= ~(1<<16); // 禁能IOCON时钟

LPC_SYSCON->CLKOUTDIV = CLKOUT_DIV;

LPC_SYSCON->CLKOUTCLKSEL= 0X00000002; // CLKOUT时钟源选择为看门狗时钟

LPC_SYSCON->CLKOUTUEN =0;

LPC_SYSCON->CLKOUTUEN =1;

while (!(LPC_SYSCON->CLKOUTUEN & 0x01)); // 确定时钟源更新后向下执行

}

void TIMER16_0_IRQHandler(void)

{

if((LPC_TMR16B0->IR&0x10)==0x10) // 如果是CAP引起的中断

{

temp = LPC_TMR16B0->CR0;

LPC_TMR16B0->TC = 0;

freq = 100000/temp; // 把单位转换成赫兹

}

else if((LPC_TMR16B0->IR&0X01)==0X01) // 如果是MR0匹配引起的中断,即溢出中断

{

freq = 0;

}

LPC_TMR16B0->IR = 0X1F; // 清中断位

}

int main()

{

UART_init(9600);

T16B0_CAP_Init();

CLKOUT_EN(200);// 9375/200=46Hz

while(1)

{

delay_ms(100);

UART_send_byte(freq);

UART_send_byte(freq>>8);

}

}

从main函数第一条语句开始看起。

第42行,打开串口并设置串口波特率为9600。

第43行,初始化“16位定时器0”的CAP功能。

第44行,使能CLKOUT_EN引脚,并输出46Hz的频率信号。(关于CLKOUT功能和此函数的介绍,请看第一章,这里我们只是用它来产生一个我们要测量的频率信号。)

第45~50行,间隔100毫秒,发送串口一次测量到的频率,打开串口调试助手,选择好串口号和波特率,选择为16进制接收。把开发板上的P0.1脚,即CLKOUT引脚和P0.2脚,即CAP引脚相连,即可在串口调试助手上看到测量出的频率值。

第26~39行是“16位定时器0”的中断服务函数。

第28行,判断是否是CAP引起的中断。

第30行,读取CR0寄存器的值。当CAP引脚上有下降沿中断产生,CR0就会自动获取当前定时器的值,存到里面。

第31行,把定时器的当前值清0。

第32行,计算频率。在初始化的时候,我们把定时器的TC值设置为10毫秒增1,每次发生下降沿中断,就会读取定时器的值,再清0,所以读取出来的值就是周期,周期=1/频率,现在的周期值单位是10毫秒,所以换成赫兹以后,就是100000/temp。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭