STM32
扫描二维码
随时随地手机看文章
这是一个综合的例子,演示了ADC模块、DMA模块和USART模块的基本使用。
我们在这里设置ADC为连续转换模式,常规转换序列中有两路转换通道,分别是ADC_CH10(PC0)和ADC_CH16(片内温度传感器)。因为使用了自动多通道转换,数据的取出工作最适合使用DMA方式取出,so,我们在内存里开辟了一个u16 AD_Value[2]数组,并设置了相应的DMA模块,使ADC在每个通道转换结束后启动DMA传输,其缓冲区数据量为2个HalfWord,使两路通道的转换结果自动的分别落到AD_Value[0]和AD_Value[1]中。
然后,在主函数里,就无需手动启动AD转换,等待转换结束,再取结果了。我们可以在主函数里随时取AD_Value中的数值,那里永远都是最新的AD转换结果。
如果我们定义一个更大的AD_Value数组,并调整DMA的传输数据量(BufferSize)可以实现AD结果的循环队列存储,从而可以进行各种数字滤波算法。
接着,取到转换结果后,根据V=(AD_Value/4096)*Vref+的公式可以算出相应通道的电压值,也可以根据 T(℃) = (1.43 - Vad)/34*10^(-6) + 25的算法,得到片内温度传感器的测量温度值了。
通过重新定义putchar函数,及包含"stdio.h"头文件,我们可以方便的使用标准C的库函数printf(),实现串口通信。
相关的官方例程,可以参考FWLib V2.0的ADCADC1_DMA和USARTprintf两个目录下的代码。
本代码例子是基于STM32F103VBT6
/******************************************************************************
* 本文件实现ADC模块的基本功能
* 设置ADC1的常规转换序列包含CH10和CH16(片内温度传感器)
* 设置了连续转换模式,并使用DMA传输
* AD转换值被放在了AD_Value[2]数组内,[0]保存CH0结果,[1]保存CH16结果
* GetVolt函数计算[0]的值对应的电压值(放大100倍,保留2位小数)
* GetTemp函数计算[1]的值对应的温度值,计算公式在相应函数内有说明
* 作者:jjldc(九九)
*******************************************************************************/
#include "stm32f10x_lib.h"
#include "stdio.h"
#define ADC1_DR_Address ((u32)0x4001244C)
vu16 AD_Value[2];
vu16 i=0;
s16 Temp;
u16 Volt;
void RCC_Configuration(void);
void GPIO_Configuration(void);
void NVIC_Configuration(void);
void USART1_Configuration(void);
void ADC1_Configuration(void);
void DMA_Configuration(void);
int fputc(int ch, FILE *f);
void Delay(void);
u16 GetTemp(u16 advalue);
u16 GetVolt(u16 advalue);
int main(void)
{
RCC_Configuration();
GPIO_Configuration();
NVIC_Configuration();
USART1_Configuration();
DMA_Configuration();
ADC1_Configuration();
//启动第一次AD转换
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
//因为已经配置好了DMA,接下来AD自动连续转换,结果自动保存在AD_Value处
while (1)
{
Delay();
Temp = GetTemp(AD_Value[1]);
Volt = GetVolt(AD_Value[0]);
USART_SendData(USART1, 0x0c); //清屏
//注意,USART_SendData函数不检查是否发送完成
//等待发送完成
while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
printf("电压:%d.%dt温度:%d.%d℃rn",
Volt/100, Volt%100, Temp/100, Temp%100);
}
}
int fputc(int ch, FILE *f)
{
//USART_SendData(USART1, (u8) ch);
USART1->DR = (u8) ch;
/* Loop until the end of transmission */
while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET)
{
}
return ch;
}
void Delay(void)
{
u32 i;
for(i=0;i<0x4f0000;i++);
return;
}
/*******************************************************************************
* Function Name : GetTemp
* Description : 根据ADC结果计算温度
* Input : u16 advalue
* Output :
* Return : u16 temp
*******************************************************************************/
u16 GetTemp(u16 advalue)
{
u32 Vtemp_sensor;
s32 Current_Temp;
// ADC转换结束以后,读取ADC_DR寄存器中的结果,转换温度值计算公式如下:
// V25 - VSENSE
// T(℃) = ------------ + 25
// Avg_Slope
// V25: 温度传感器在25℃时 的输出电压,典型值1.43 V。
// VSENSE:温度传感器的当前输出电压,与ADC_DR 寄存器中的结果ADC_ConvertedValue之间的转换关系为:
// ADC_ConvertedValue * Vdd
// VSENSE = --------------------------
// Vdd_convert_value(0xFFF)
// Avg_Slope:温度传感器输出电压和温度的关联参数,典型值4.3 mV/℃。
Vtemp_sensor = advalue * 330 / 4096;
Current_Temp = (s32)(143 - Vtemp_sensor)*10000/43 + 2500;
return (s16)Current_Temp;
}
/*******************************************************************************
* Function Name : GetVolt
* Description : 根据ADC结果计算电压
* Input : u16 advalue
* Output :
* Return : u16 temp
*******************************************************************************/
u16 GetVolt(u16 advalue)
{
return (u16)(advalue * 330 / 4096);
}
/*******************************************************************************
* Function Name : RCC_Configuration
* Description : 系统时钟设置
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RCC_Configuration(void)
{
ErrorStatus HSEStartUpStatus;
//使能外部晶振
RCC_HSEConfig(RCC_HSE_ON);
//等待外部晶振稳定
HSEStartUpStatus = RCC_WaitForHSEStartUp();
//如果外部晶振启动成功,则进行下一步操作
if(HSEStartUpStatus==SUCCESS)
{
//设置HCLK(AHB时钟)=SYSCLK
RCC_HCLKConfig(RCC_SYSCLK_Div1);
//PCLK1(APB1) = HCLK/2
RCC_PCLK1Config(RCC_HCLK_Div2);
//PCLK2(APB2) = HCLK
RCC_PCLK2Config(RCC_HCLK_Div1);
//设置ADC时钟频率
RCC_ADCCLKConfig(RCC_PCLK2_Div2);
//FLASH时序控制
//推荐值:SYSCLK = 0~24MHz Latency=0
// SYSCLK = 24~48MHz Latency=1
// SYSCLK = 48~72MHz Latency=2
FLASH_SetLatency(FLASH_Latency_2);
//开启FLASH预取指功能
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
//PLL设置 SYSCLK/1 * 9 = 8*1*9 = 72MHz
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
//启动PLL
RCC_PLLCmd(ENABLE);
//等待PLL稳定
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);
//系统时钟SYSCLK来自PLL输出
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
//切换时钟后等待系统时钟稳定
while(RCC_GetSYSCLKSource()!=0x08);
}
//下面是给各模块开启时钟
//启动GPIO
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |
RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,
ENABLE);
//启动AFIO
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
//启