当前位置:首页 > 单片机 > 单片机
[导读]ATmega16 单片机带有一个全双工的通用同步/异步串行收发模块USART,该接口是一个高度灵活的串行通讯设备。其主要特点如下:全双工操作,可同时进行收发操作;支持同步或异步操作;支持5、6、7、8 和9 位数据位,1 位

ATmega16 单片机带有一个全双工的通用同步/异步串行收发模块USART,该接口是一个高度灵活的串行通讯设备。其主要特点如下:

全双工操作,可同时进行收发操作;

支持同步或异步操作;

支持5、6、7、8 和9 位数据位,1 位或者2 位停止位的串行数据帧结构;

三个完全独立的中断,TX 发送完成,TX 发送数据寄存器空,RX 接收完成;

支持多机通讯模式;

相关寄存器:

USART 数据寄存器—UDR;

USART 控制和状态寄存器—UCSRA,UCSRB,UCSRC;

波特率寄存器—UBRRL 和UBRRH;

串口背景知识

(1)串行通讯简介

串行同步通讯容易理解,约定一个同步时钟,每一时刻传输线上的信息就是要传送的信息单元。串行异步通讯是把一个字符看作一个独立的信息单元,每一个字符中的各位是以固定的时间传送。因此,这种传送方式在同一字节内部是同步的,而字符间是异步的。在异步通信中收发双方取得同步的方法是采用在字符格式中设置起始位,而在字符结束时发送1~2 个停止位。当接收器检测到起始位时,便能知道经接着的是有效的字符位,于是开始接收字符,检测到停止位时,就将接收到的有效字符装载到接收缓冲器中。最简单的串口通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配:


a,波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。


b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准 ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。


c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。


d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对于偶校验,校验位为0,保证逻辑高的位数是偶数个。如果是奇校验,校验位位1,这样就有3个逻辑高位。高位和低位不真正的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步

USART 接受以下30 种组合的数据帧格式:

? 1 个起始位

? 5、 6、 7、 8 或9 个数据位

? 无校验位、奇校验或偶校验位

? 1或2 个停止位

数据帧以起始位开始;紧接着是数据字的最低位,数据字最多可以有9 个数据位,以数据的最高位结束。如果使能了校验位,校验位将紧接着数据位,最后是结束位。当一个完整的数据帧传输后,可以立即传输下一个新的数据帧,或使传输线处于空闲状态。

数据帧的结构由UCSRB 和 UCSRC 寄存器中的UCSZ2:0、 UPM1:0、USBS 设定。接收与发送使用相同的设置。设置的任何改变都可能破坏正在进行的数据传送与接收。

(2)串口的组成

串口由阴阳两种接口组成。最常使用的信号引脚是TD、RD 和SG,因此最简单的串口调试只需要包含3 条引线就可以了。在RS232(一种串行工业总线标准)标准中,利用RD、TD 作为接收、发送信号线,加入地线,约定好通讯的波特率,实现串行信号传输。

(3)串口电平转换电路

PC 的串口工作TTL 信号是12V 的,而在我们一般使用的电路板上,电源信号和TTL 电平是5V 的(在低功耗电路中是3.3V 的),为了将信号转化为可用,需要做串口的电平转换。这一部分电路已经有相应的生产厂商做出了各种集成芯片,例如MAXIM 公司的MAX232/MAX233 芯片,就是实现5V 电路中和PC 实现串口通信的电平转换芯片,而MAX3232/MAX3233 可以实现3.3V 的电平转换。


串口寄存器介绍

USART I/O数据寄存器- UDR

USART 发送数据缓冲寄存器和USART 接收数据缓冲寄存器共享相同的I/O 地址,称为USART 数据寄存器或UDR。将数据写入UDR 时实际操作的是发送数据缓冲器存器(TXB),读UDR 时实际返回的是接收数据缓冲寄存器(RXB) 的内容。在5、6、7 比特字长模式下,未使用的高位被发送器忽略,而接收器则将它们设置为0。只有当UCSRA寄存器的UDRE标志置位后才可以对发送缓冲器进行写操作。如果UDRE没有置位,那么写入UDR 的数据会被USART 发送器忽略。当数据写入发送缓冲器后,若移位寄存器为空,发送器将把数据加载到发送移位寄存器。然后数据串行地从TxD 引脚输出。接收缓冲器包括一个两级FIFO,一旦接收缓冲器被寻址FIFO 就会改变它的状态。因此不要对这一存储单元使用读- 修改- 写指令(SBI 和CBI)。使用位查询指令(SBIC 和SBIS)时也要小心,因为这也有可能改变FIFO 的状态。


USART控制和状态寄存器A -UCSRA

? Bit 7 – RXC: USART接收结束

接收缓冲器中有未读出的数据时RXC 置位,否则清零。接收器禁止时,接收缓冲器被刷新,导致RXC 清零。RXC 标志可用来产生接收结束中断( 见对RXCIE 位的描述)。

? Bit 6 – TXC: USART发送结束

发送移位缓冲器中的数据被送出,且当发送缓冲器 (UDR) 为空时TXC 置位。执行发送结束中断时TXC 标志自动清零,也可以通过写1 进行清除操作。TXC 标志可用来产生发送结束中断( 见对TXCIE 位的描述)。

? Bit 5 – UDRE: USART数据寄存器空

UDRE标志指出发送缓冲器(UDR)是否准备好接收新数据。UDRE为1说明缓冲器为空,已准备好进行数据接收。UDRE标志可用来产生数据寄存器空中断(见对UDRIE位的描述)。复位后UDRE 置位,表明发送器已经就绪。

? Bit 4 – FE:帧错误

如果接收缓冲器接收到的下一个字符有帧错误,即接收缓冲器中的下一个字符的第一个停止位为0,那么FE 置位。这一位一直有效直到接收缓冲器(UDR) 被读取。当接收到的停止位为1 时, FE 标志为0。对UCSRA 进行写入时,这一位要写0。

? Bit 3 – DOR:数据溢出

数据溢出时DOR 置位。当接收缓冲器满( 包含了两个数据),接收移位寄存器又有数据,若此时检测到一个新的起始位,数据溢出就产生了。这一位一直有效直到接收缓冲器(UDR) 被读取。对UCSRA 进行写入时,这一位要写0。

? Bit 2 – PE:奇偶校验错误

当奇偶校验使能(UPM1 = 1),且接收缓冲器中所接收到的下一个字符有奇偶校验错误时UPE 置位。这一位一直有效直到接收缓冲器 (UDR) 被读取。对UCSRA 进行写入时,这一位要写0。

? Bit 1 – U2X:倍速发送

这一位仅对异步操作有影响。使用同步操作时将此位清零。此位置1 可将波特率分频因子从16 降到8,从而有效的将异步通信模式的传输速率加倍。

? Bit 0 – MPCM:多处理器通信模式

设置此位将启动多处理器通信模式。MPCM 置位后, USART 接收器接收到的那些不包含地址信息的输入帧都将被忽略。发送器不受MPCM设置的影响。详细信息请参考 P150“多处理器通讯模式” 。


USART控制和状态寄存器B -UCSRB

? Bit 7 – RXCIE:接收结束中断使能

置位后使能RXC 中断。当RXCIE 为1,全局中断标志位SREG 置位, UCSRA 寄存器的RXC 亦为1 时可以产生USART 接收结束中断。

? Bit 6 – TXCIE:发送结束中断使能

置位后使能TXC 中断。当TXCIE 为1,全局中断标志位SREG 置位,UCSRA 寄存器的TXC 亦为1 时可以产生USART 发送结束中断。

? Bit 5 – UDRIE: USART数据寄存器空中断使能

置位后使能UDRE 中断。当UDRIE 为1,全局中断标志位SREG 置位,UCSRA 寄存器的UDRE 亦为1 时可以产生USART 数据寄存器空中断。

? Bit 4 – RXEN:接收使能

置位后将启动USART 接收器。RxD 引脚的通用端口功能被USART 功能所取代。禁止接收器将刷新接收缓冲器,并使 FE、DOR 及PE 标志无效。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭