当前位置:首页 > 单片机 > 单片机
[导读]1 前言当bxCAN接收到报文,经过过滤器过滤后,会将报文存储到FIFO中,由http://blog.csdn.net/flydream0/article/details/8148791一文中可知,每个过滤器组都会关联一个FIFO,由此可见,当接收到的报文通过过滤器后会

1 前言

当bxCAN接收到报文,经过过滤器过滤后,会将报文存储到FIFO中,由http://blog.csdn.net/flydream0/article/details/8148791一文中可知,每个过滤器组都会关联一个FIFO,由此可见,当接收到的报文通过过滤器后会被存储到此过滤器组关联的FIFO中(STM32共两个接收FIFO)。这个FIFO为3级邮箱深度,且完全由硬件来管理,从而节省了CPU的处理负荷,简化了软件并保证了数据的一致性。应用程序只能通过读取FIFO输出邮箱,来读取FIFO中最先收到的报文。

2 什么是FIFO输出邮箱?

在回答这个问题之前,首先要知道一些内容,STM32的bxCAN模式共有两个接收FIFO,其次,每个接收FIFO有3级邮箱深度,意思就是说由三个邮箱组成,你暂且可以将这三个邮箱一起看成一个具体三个成员的消息队列,那么,你肯定会问,这个消息队列哪个是队首,哪个是队尾(假设消息从队首存入,从队尾取出)?在这里,这个FIFO输出邮箱就相当于这个队尾的意思,你可以将它看成是一个指向队尾的指针。那么三个邮箱哪个是队尾呢?显而易见,这就取决了当时接收到的消息了。

3 有效报文的定义

根据CAN协议,当报文被正确接收(直到EOF域的最后一位都没有错误),且通过了标识符过滤,那么该报文被认为是有效报文(参考:http://blog.csdn.net/flydream0/article/details/8148791)。

4 FIFO的状态

FIFO共有五个状态:空状态,挂号1状态,挂号2状态,挂号3状态,溢出状态。如下图所示:

图1

如上图,FIFO的状态是通过两个标志(FMP,FOVR)来体现的,FMP占两个位,用来标志当前报文所存储的邮箱,FOVR用以标志FIFO是否溢出。这两个标志处于FIFO寄存器(CAN_RFxR x=0..1)中。

4.1 FIFO的状态变化分析

由图1可知,在初始化状态时,FIFO是处于空状态的,当接收到一个报文时,这个报文存储到FIFO内部的邮箱中,此时,FIFO的状态变成挂号1状态,如果应用程序取走这个消息,则FIFO恢复空状态。

现在假设FIFO处于挂号1状态,即已接收到一个报文,且应用程序不没来得及取走接收到的报文,此时若再次接收到一个报文,那么FIFO将变成挂号2状态,以此类推,由于FIFO共有3个邮箱,只能缓存3个报文,因此,当接收到3个报文(假设期间应用程序从未取走任何报文)时,此时FIFO已满,若再来一个报文时,已无法再存储,此时FIFO将变成溢出状态。

4.2 FIFO溢出时的策略

STM32有两种策略来处理当FIFO溢出时的报文:

一:当FIFO溢出时,首先抛弃FIFO内最老的报文,然后再存入新接收到的报文,即滚动接收模式。

二:当FIFO溢出时,抛弃新接收到的报文,即FIFO锁定模式。

如何采用以上何种策略,取决于具体应用需求。如何设置?CAN主控制器寄存器(CAN_MCR)设置RFLM位为0,则为FIFO滚动接收模式,设为1,则为FIFO锁定模式。

5 与CAN接收相关的中断

STM32中与CAN接收相关的中断有三个:

接收中断:每当bxCAN接收到一个报文时产生一个中断。

FIFO满中断:当FIFO满时,即存储了3个报文时产生的中断。

FIFO溢出中断:当FIFO溢出时产生此中断。

需要注意的是,并不是以上所有中断就一定会产生,这取决于中断允许寄存器(CAN_IER)如何配置,关于中断相关内容,详情请关注后续中断介绍博文。

6 FIFO的构成

前面已经说过,STM32共有两个接收FIFO,每个FIFO由三个邮箱构成,那么每个邮箱又是如何的呢?

每个邮箱是由四个寄存器组成,这四个寄存器分别是:接收FIFO邮箱标识符寄存器(CAN_RIxR x=0..1),接收邮箱数据长度和时间戳寄存器(CAN_RDTxR x=0..1),接收FIFO邮箱低字节寄存器(CAN_RDLxR x=0..1),接收FIFO邮箱高字节寄存器(CAN_RDHxR x=0..1)。

6.1 标识符寄存器(CAN_RIxR)(x=0..1)

地址偏移量:0x1B0,0x1C0
复位值:未定义位
注: 所有接收邮箱寄存器都是只读的。

图2

由上图可知,一个CAN ID寄存器由11位标准id+18位扩展id+IDE(扩展标识)+RTR(远程帧标志)组成。


位31:21STID[10:0]: 标准标识符
扩展身份标识的高字节。位20:3EXID[17:0]: 扩展标识符
扩展身份标识的低字节。位2IDE: 标识符选择
该位决定接收邮箱中报文使用的标识符类型
0: 使用标准标识符;
1: 使用扩展标识符。位1RTR: 远程发送请求
0: 数据帧;
1: 远程帧。位0保留位。


6.2 数据长度和时间戳寄存器 (CAN_RDTxR) (x=0..1)

地址偏移量:0x1B4,0x1C4
复位值:未定义位
注: 所有接收邮箱寄存器都是只读的。

图3

各位的定义如下:


位31:16TIME[15:0]: 报文时间戳
该域包含了,在接收该报文SOF的时刻,16位定时器的值。位15:8FMI[15:0]: 过滤器匹配序号
这里是存在邮箱中的信息传送的过滤器序号。关于标识符过滤的细节,请参考21.4.4中有关过滤器匹配序号。位7:4保留位,硬件强制为0。位3:0DLC[15:0]: 接收数据长度
该域表明接收数据帧的数据长度(0~8)。对于远程帧,数据长度DLC恒为0。


这里需求注意的是FMI,还记得之前一篇介绍过滤器组的文章吗:http://blog.csdn.net/flydream0/article/details/8148791,当接收到一个报文时,这个报文通过某一个过滤器时,会将此过滤器对应的序号,即过滤器匹配序号保存到关联的接收FIFO中,具体来说,应该是保留到关联的FIFO中的邮箱的数据长度和时间戳寄存器的FMI位。这下明白了吧。

6.3 接收FIFO邮箱低字节数据寄存器 (CAN_RDLxR) (x=0..1)

地址偏移量:0x1B8,0x1C8
复位值:未定义位
注: 所有接收邮箱寄存器都是只读的。

接收到的报文的数据用两个寄存器存储,分别存储高四个字节和低四个字节。这里是指低四个字节。

图4


位31:24DATA3[7:0] : 字节3
报文的数据字节3。位23:16DATA2[7:0] : 字节2
报文的数据字节2。位15:8DATA1[7:0] : 字节1
报文的数据字节1。位7:0DATA0[7:0] : 字节0
报文的数据字节0。
报文包含0到8个字节数据,且从字节0开始。


6.4 接收FIFO邮箱高字节数据寄存器 (CAN_RDHxR) (x=0..1)

地址偏移量:0x1BC,0x1CC
复位值:未定义位
注: 所有接收邮箱寄存器都是只读的。

含义如6.3节,这时是指接收报文的数据的高四个字节。

图5


位31:24DATA7[7:0] : 字节7
报文的数据字节7
注: 如果CAN_MCR寄存器的TTCM位为1,且该邮箱的TGT位也为1,那么DATA7和DATA6将被TIME时间戳代替。位23:16DATA6[7:0] : 字节6
报文的数据字节6。位15:8DATA5[7:0] : 字节5
报文的数据字节5。位7:0DATA4[7:0] : 字节4
报文的数据字节4。


7 CAN的接收FIFO寄存器(CAN_RFxR x=0..1)介绍

前面已经介绍了接收FIFO中的邮箱的组成(每个邮箱由四个寄存器组成),接收FIFO有了三个邮箱所包含的寄存器还不够,接收FIFO还应该由一个专门的寄存器来管理,来指示接收

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭