当前位置:首页 > 单片机 > 单片机
[导读]主模式:我们今天来讲I2C通信。那I2C通信的特点是什么能。我们一般使用的串口 (半双工异步串行通信)与I2C 有什么区别呢。 串口(半双工异步串行通信):就是好像朋友在对话。我可以主动和你讲话,你也可以主动和我

主模式:

我们今天来讲I2C通信。那I2C通信的特点是什么能。我们一般使用的串口 (半双工异步串行通信)与I2C 有什么区别呢。

串口(半双工异步串行通信):就是好像朋友在对话。我可以主动和你讲话,你也可以主动和我讲话。

I2C:就好像上下级对话。一个领导面对一个或者多个员工。只有领导主动说话的份儿,下面的员工不能主动说话。只有领导问了,员工才能答。

I2C通信

I2C通信只需要两个引脚 一个数据线,一个时钟线。 数据线顾名思义就是用来传递数据的。时钟线是来决定数据传输的速度。当时钟线为高电平时,数据线上的数据才会被认为是有效的。

数据线的 数据有四种状态 : 高电平,低电平,下降沿(高电平变低电平),上升沿(低电平变高电平)。

当时钟线为高电平时候这四种状态分别代表:1,0,起始位,停止位。

如果我们发送的数据为十六进制的0x88即是二进制为10001000的数据是怎么发送的呢?我们就以此为例一步步讲解。

1,常态

在不发送任何数据的时候数据线和时钟线都为高电平。所以I2C通信在硬件设计,需要在数据线和时钟线上分别加上两个上拉电阻。

2,起始

当开始发送数据的时候 时钟线为高同时数据线从 高电平变低电平,代表开始发送数据。

3,发送数据

发送完起始位后时钟线变为低电平,在发送每一位的数据之前时钟线有一段低电平,主要的作用是给数据线做电平变化用的。

我们现在要发送的第一个位是 1。

1、时钟线为低,同时数据线从低电平变成高电平。

2、接着时钟线变为高电平,此时接收方得知时钟线为高,便查看数据线为高电平 说明数据为 “1”。

3、我们要发送的下一个位为0。时钟线再变为低,同时数据线从高电平变成低电平。

4、接着时钟线再变为高电平,此时接收方得知时钟线为高,便查看数据线为低电平 说明数据为"0"。

5、再下一个为还为0。时钟线再变为低,同时数据线一直保持低电平不变。

6、接着时钟线再变为高电平,此时接收方得知时钟线为高,便查看数据线为低电平 说明数据为”0“。

以此类推 直到发送完所有的位。

4,应答(ACK)

当接收方接收完一个字节的数据就要告诉对方我收到了。接收方如果接收到数据则控制数据线输出低电平。否则为高电平。

5,停止

没有下一个字节要发送,最后时钟线变为高电平后,数据线从低电平变为高电平。代表数据发送停止。

实例讲解:使用单片机使用 RSM2257 电子音量控制芯片来控制音量。一个按键按下,声音变大,一个按键按下,声音变小。在加上一个按键,控制一个LED亮灭的程序。而且音量掉电保存。

介绍RSM2257.

子地址

在I2C通信中每一个从设备都有个子地址,因为I2C支持一主多从,也就是说有一个主机可以连接多个从机。每个从机,都有个地址。就好像每个人的名字一样来区分不同的设备。下面是RSM2257接口协议,首先先发送RSM2257 设备地址 10001000.然后再发送数据。

数据

RSM2257的数据是用来表示音量大小的。我们控制两个音频通道,以10dB为单位降低或增加音量。从功能设置位表格中可知数据为 11100B2B1B0.

B2B1B0的数值决定了音量。请详见 衰减设置位。

单片机I2C通信初始化设置

1、设置端口为输入

TRISC0 = input;
TRISC1 = input;

2、设置模式

我们设置ssp1控制寄存器的 SSP1M<3:0>.我们需要的是I2C主模式。设置如下

SSP1CON1bits.SSPM0 = 0;
SSP1CON1bits.SSPM1 = 0;
SSP1CON1bits.SSPM2 = 0;
SSP1CON1bits.SSPM3 = 1;// I2C Master mode ,clock=Fosc/(4*(SSPxADD+1))

3、设置时钟线频率RSM2257最大为100KHZ,我选择设置为50KHZ.

使用计算公式clock=Fosc/(4*(SSPxADD+1)) 计算出SSP1ADD的值为0x9F;

SSP1ADD=0x9F;

4、开启I2C通信

SSP1CON1bits.SSPEN = 1;

单片机I2C发送程序

1、发送起始位

SSP1CON2bits.SEN = 1;//Start condition
while(SSP1CON2bits.SEN == 1);//waiting for Start condition completed.

2、发送地址
PIR1bits.SSP1IF = 0;
SSP1BUF = 0x88;//Device Address
while(PIR1bits.SSP1IF == 0);
PIR1bits.SSP1IF = 0;
// ~ACK 我们不理会接收方有没有应答。
3、发送 10db音量控制的数据
SSP1BUF = tx_data;//Data 10db level
while(PIR1bits.SSP1IF == 0);
PIR1bits.SSP1IF = 0;
4、发送1db音量控制的数据
// ~ACK
SSP1BUF = 0xD0;//Data 1db level
while(PIR1bits.SSP1IF == 0);
PIR1bits.SSP1IF = 0;

5,发送停止位
// ~ACK
SSP1CON2bits.PEN = 1;//Stop condition

关于I2C通信协议,RSM2257,PIC MSSP 模块设置成I2C,更详细的内容就必须去看数据手册了。

实例程序:程序分为main.c 和 define.h两个文件 芯片PIC16LF1823,开发环境MPLAB X IDE.

define.h文件

/**********RA*********/
//B'1111,1000'H F8
#define LED_SW RA5//IN
#define UP_SW RA4//IN
#define DOWN_SW RA3//IN
#define LED RA2//OUT
//RA1
//RA0
/**********RC***********/
//H FF
//RC0 SCL
//RC1 SDA
#define input 1
#define LED_VALUE 1
#define UP_VALUE 2
#define DOWN_VALUE 3
#define key_delay 300

main.c文件

#include
#include"define.h"
__CONFIG(FOSC_INTOSC&WDTE_OFF&PWRTE_ON&MCLRE_OFF&CP_ON&CPD_OFF&BOREN_ON

&CLKOUTEN_OFF&IESO_ON&FCMEN_ON);
__CONFIG(PLLEN_OFF&LVP_OFF) ;
void tx_pro(unsigned char tx_db);
unsigned char DB_VALUE;
void init_fosc(void)
{
OSCCON = 0xF0;//32MHZ
}
void init_gpio(void)
{
PORTA=0;
LATA =0;
ANSELA=0x00;
TRISA =0xF8;


PORTC=0;
LATC=0;
ANSELC = 0x00;
TRISC =0xFF;
}
void init_i2c_master()
{
TRISC0 = input;
TRISC1 = input;
SSP1CON1bits.SSPM0 = 0;
SSP1CON1bits.SSPM1 = 0;
SSP1CON1bits.SSPM2 = 0;
SSP1CON1bits.SSPM3 = 1;// I2C Master mode ,clock=Fosc/(4*(SSPxADD+1))
SSP1STATbits.SMP = 1;
SSP1ADD = 0x9F;//SCL CLOCK Frequency 50KHZ
SSP1CON1bits.SSPEN = 1;
}
void i2c_master_tx(unsigned char tx_data)
{
SSP1CON2bits.SEN = 1;//Start condition
while(SSP1CON2bits.SEN == 1);//waiting for Start condition completed.


PIR1bits.SSP1IF = 0;
SSP1BUF = 0x88;//Device Address
while(PIR1bits.SSP1IF == 0);
PIR1bits.SSP1IF = 0;
// ~ACK

SSP1BUF = tx_data;//Data 10db level
while(PIR1bits.SSP1IF == 0);
PIR1bits.SSP1IF = 0;

// ~ACK
SSP1BUF = 0xD0;//Data 1db level
while(PIR1bits.SSP1IF == 0);
PIR1bits.SSP1IF = 0;
// ~ACK
SSP1CON2bits.PEN = 1;//Stop condition
}
void delay(unsigned int n)
{
while(n--);
}
unsigned char key_board(void)
{
if(LED_SW==1)
{
delay(key_delay);
if(LED_SW==1)
{
while(LED_SW==1);
return LED_VALUE;
}
}
if(UP_SW==1)
{
delay(key_delay);
if(UP_SW==1)
{
while(UP_SW==1);
return UP_VALUE;
}
}
if(DOWN_SW==1)
{
delay(key_delay);
if(DOWN_SW==1)
{
while(DOWN_SW==1);
return DOWN_VALUE;
}


}
return 0;


}
void DB_INC(void)
{
if(DB_VALUE < 7)
{
DB_VALUE++;
eeprom_write(0x00, DB_VALUE);//将音量值保存到EEPROM这样掉电后数据也不会丢失。
tx_pro(DB_VALUE);
}




}
void DB_DEC(void)
{
if(DB_VALUE > 0)
{
DB_VALUE --;
eeprom_write(0x00, DB_VALUE);
tx_pro(DB_VALUE);
}
}
void tx_pro(unsigned char tx_db)
{
tx_db |= 0xE0; //将高三位设置为1。表示两个音频通道,以10dB为单位降低或增加音量
i2c_master_tx(tx_db);//I2C发送数据程序
}
/*
*
*/
int main(int argc, char** argv) {
unsigned char keyvalue;
init_fosc();
init_gpio();
init_i2c_master();
LED=0;
DB_VALUE= eeprom_read(0x00);//读eeprom 中保存的音量值
if(DB_VALUE > 7)//如果之前没有设置过则音量不衰减
{
DB_VALUE = 0;
}
tx_pro(DB_VALUE);//用I2C通信设置RSM2257的音量
while(1)
{
keyvalue=key_board();//判断按键程序,
switch(keyvalue)
{
case LED_VALUE://LED按键按下
{
LED = ~LED;
};break;
case UP_VALUE://音量加
{
DB_INC();
};break;
case DOWN_VALUE://音量减
{
DB_DEC();
};break;
}
}
}

从模式:

网上有许多讲解单片机 实现I2C主模式,但是从模式的很少。我现在就来讲讲PIC单片机使用MSSP模块实现I2C从模式。

有关I2C协议的具体介绍可以看 《PIC单片机之I2C(主模式)》,我们这里直接讲解实例

实例讲解:我们模仿 AT24C02 EEPROM 的协议。让一个主模式的单片机,来读取从模式单片机的数据。

下面为AT24C02的随机地址读取的协议。

第一个字节 :输入7位地址和一位的写状态位,

第二个字节:然后写入EEPROM数据地址,

第三个字节:输入7位地址和一位的读状态位,

第四~N个字节:读出的EEPROM的数据。

我们来讲解下程序的基本思路:我们使能了MSSP中断,即是I2C接收中断,当PIC单片机接收到一个数据后就会产生中断。那是接收到设备地址,还是接收到数据,由SSP1STAT寄存器的状态位来判断。

需要判断的状态位分别是 :

数据和地址: 用来判断接收到是地址还是数据

启动位: 用来判断是否接收到启动位

读写: 用来判断是写状态还是读状态。

缓存满: 用来判断缓冲区是否满

我们以随机地址读取为例:讲讲程序执行的过程

1,从单片机接收到启示位和设备地址中断:我们判断SSP1STAT的状态位为(写状态,地址,缓存满,接收到启示位) 然后读取缓存中的设备地址, 接着在读取 需要读/写的数据地址。

2,单片机再次接收到设备地址:我们判断是SSP1STAT的状态为(读状态)然后从设备就输出数据

我们以写字节数据为例:

1,从单片机接收到启示位和设备地址中断:我们判断SSP1STAT的状态位为(写状态,地址,缓存满,接收到启示位) 然后读取缓存中的设备地址, 接着在读取 需要读/写的数据地址。

2,单片机判断SSP1STAT的状态位为(写状态,数据,缓存满)那么单片机就接收输入的数据。

初始化设置:

1,设置I2C通信的两引脚为CLK SCL为输入,

TRISB6 = input;
TRISB4 = input;

2,将MSSP设置为I2C从模式,七位从地址

SSP1CONbits.SSPM0 = 0;
SSP1CONbits.SSPM1 = 1;
SSP1CONbits.SSPM2 = 1;
SSP1CONbits.SSPM3 = 0;// I2C slave mode ,7bit address

3,使能CLK时钟

SSP1CONbits.CKP = 1; // enable clock

4,设置从设备地址为 0xA0

SSP1ADD =0xA0; //slave address is 0xa0

5,开启I2C

SSP1CONbits.SSPEN=1;//enable I2c

6,清楚状态标志
SSPSTAT=0;
7,使能I2C中断
PIE1bits.SSP1IE = 1;//Enabe interrupt MSSP
INTCONbits.PEIE = 1;
INTCONbits.GIE = 1;

如果你要使用PIC单片机I2C从模式只要使用下面的代码:

将void i2c_salve_interrupt_tx();void i2c_salve_interrupt_rx();放到中断程序中,如下:

void interrupt isr(void)
{
if(SSP1IE && SSP1IF)
{
i2c_salve_interrupt_tx();
i2c_salve_interrupt_rx();
SSP1IF=0;
}

}

将初始化函数init_i2c_slave();放到主函数中

void main()

{

init_i2c_slave();

}

头文件 :i2c_salve.h

#ifndef _I2C_SALVE_H
#define _I2C_SALVE_H
void init_i2c_slave();
void i2c_salve_interrupt_tx();
void i2c_salve_interrupt_rx();
#endif

代码:i2c_salve.c

#include;
#define input 1

#define RX_BUF_LEN 29

#define while_delay 6000

unsigned char i2c_address,word_address,Register[29];
unsigned char RANDOM_READ,i2c_counter;
extern unsigned char A_readflag;
/*I2C SALVE */
void init_i2c_slave()
{
TRISB6 = input;
TRISB4 = input;
SSP1CONbits.SSPM0 = 0;
SSP1CONbits.SSPM1 = 1;
SSP1CONbits.SSPM2 = 1;
SSP1CONbits.SSPM3 = 0;// I2C slave mode ,7bit address
SSP1CONbits.CKP = 1; // enable clock
SSP1ADD =0xA0; //slave address is 0xa0

SSP1CONbits.SSPEN=1;//enable I2c
SSPSTAT=0;


PIE1bits.SSP1IE = 1;//Enabe interrupt MSSP
INTCONbits.PEIE = 1;
INTCONbits.GIE = 1;


}
/*I2C salve mode interrupt */
void i2c_salve_interrupt_tx()//master read
{
unsigned char Temp;
unsigned int timercounter;


Temp=SSP1STAT;
Temp &= 0x2D;
if(SSP1STATbits.R_nW ==1)//Read operation.
{
A_readflag=0;
SSP1IF = 0;
i2c_address = SSP1BUF;
i2c_counter = word_address;
while(i2c_counter < RX_BUF_LEN)
{
SSP1BUF=Register[i2c_counter];//send data
SSP1CONbits.CKP=1;// enable colck
timercounter=while_delay;
while(PIR1bits.SSP1IF == 0)
{
timercounter--;
if(timercounter==0)
{
return;
}
}//waiting for ~ACK
SSP1IF = 0;
if(SSP1CON2bits.ACKSTAT == 1)
{
return ; //NOACK
}
else
{
i2c_counter++;//ACK

}
}
SSP1IF = 0;
}
}



void i2c_salve_interrupt_rx()//master writer
{
unsigned char rx_status;
unsigned char Temp;
unsigned int timercounter;
rx_status=false;
Temp=SSP1STAT;
Temp &= 0x2D;
if(Temp==0x09)//Write operation,last byte was an address,buffer is full
{


SSP1IF = 0;
i2c_address = SSP1BUF;
timercounter=while_delay;
while(PIR1bits.SSP1IF == 0)
{
timercounter--;
if(timercounter==0)
{
return ;
}


}//waiting for send ~ACK
SSP1IF = 0;
word_address = SSP1BUF;
return ;
}
if(Temp==0x29)//Write operation,last byte was data,buffer is full
{

SSP1IF=0;
Register[word_address]=SSP1BUF;
word_address++;
if(word_address>=RX_BUF_LEN)
{
word_address=0;
}
}


}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭