单片机通信实例与 ASCII 码
扫描二维码
随时随地手机看文章
我们学习串口通信主要是要实现单片机和电脑之间的信息交互,可以用电脑控制单片机的一些信息,可以把单片机的一些信息状况发给电脑上的软件。下面我们就做一个简单的例程,实现单片机串口调试助手发送的数据,在我们开发板上的数码管上显示出来。
#includesbitADDR3=P1^3;sbitENLED=P1^4;unsignedcharcodeLedChar[]={//数码管显示字符转换表0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E};unsignedcharLedBuff[7]={//数码管+独立LED显示缓冲区0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};unsignedcharT0RH=0;//T0重载值的高字节unsignedcharT0RL=0;//T0重载值的低字节unsignedcharRxdByte=0;//串口接收到的字节voidConfigTimer0(unsignedintms);voidConfigUART(unsignedintbaud);voidmain(){EA=1;//使能总中断ENLED=0;//选择数码管和独立LEDADDR3=1;ConfigTimer0(1);//配置T0定时1msConfigUART(9600);//配置波特率为9600while(1){//将接收字节在数码管上以十六进制形式显示出来LedBuff[0]=LedChar[RxdByte&0x0F];LedBuff[1]=LedChar[RxdByte>>4];}}/*配置并启动T0,ms-T0定时时间*/voidConfigTimer0(unsignedintms){unsignedlongtmp;//临时变量tmp=11059200/12;//定时器计数频率tmp=(tmp*ms)/1000;//计算所需的计数值tmp=65536-tmp;//计算定时器重载值tmp=tmp+13;//补偿中断响应延时造成的误差T0RH=(unsignedchar)(tmp>>8);//定时器重载值拆分为高低字节T0RL=(unsignedchar)tmp;TMOD&=0xF0;//清零T0的控制位TMOD|=0x01;//配置T0为模式1TH0=T0RH;//加载T0重载值TL0=T0RL;ET0=1;//使能T0中断TR0=1;//启动T0}/*串口配置函数,baud-通信波特率*/voidConfigUART(unsignedintbaud){SCON=0x50;//配置串口为模式1TMOD&=0x0F;//清零T1的控制位TMOD|=0x20;//配置T1为模式2TH1=256-(11059200/12/32)/baud;//计算T1重载值TL1=TH1;//初值等于重载值ET1=0;//禁止T1中断ES=1;//使能串口中断TR1=1;//启动T1}/*LED动态扫描刷新函数,需在定时中断中调用*/voidLedScan(){staticunsignedchari=0;//动态扫描索引P0=0xFF;//关闭所有段选位,显示消隐P1=(P1&0xF8)|i;//位选索引值赋值到P1口低3位P0=LedBuff[i];//缓冲区中索引位置的数据送到P0口if(i<6){//索引递增循环,遍历整个缓冲区i++;}else{i=0;}}/*T0中断服务函数,完成LED扫描*/voidInterruptTimer0()interrupt1{TH0=T0RH;//重新加载重载值TL0=T0RL;LedScan();//LED扫描显示}/*UART中断服务函数*/voidInterruptUART()interrupt4{if(RI){//接收到字节RI=0;//手动清零接收中断标志位RxdByte=SBUF;//接收到的数据保存到接收字节变量中//接收到的数据又直接发回,叫作-"echo",//用以提示用户输入的信息是否已正确接收SBUF=RxdByte;}if(TI){//字节发送完毕TI=0;//手动清零发送中断标志位}}
大家在做这个实验的时候,有个小问题要注意一下。因为 STC89C52 下载程序是使用了 UART 串口下载,下载完程序后,程序运行起来了,可是下载软件最后还会通过串口发送一些额外的数据,所以程序刚下载进去不是显示00,而可能是其他数据。大家只要把电源开关关闭,重新打开一次就好了。
细心的同学可能会发现,在串口调试助手发送选项和接收选项处,还有个“字符格式发送”和“字符格式显示”,这是什么意思呢?
先抛开我们使用的汉字不谈,那么我们常用的字符就包含了0~9的数字、A~Z/a~z 的字母、还有各种标点符号等。那么在单片机系统里面我们怎么来表示它们呢? ASCII 码(American Standard Code for Information Interchange,即美国信息互换标准代码)可以完成这个使命:我们知道,在单片机中一个字节的数据可以有0~255共256个值,我们取其中的0~127共128个值赋予了它另外一层涵义,即让它们分别来代表一个常用字符,其具体的对应关系如表11-3所示。
表11-3 ASCII 码字符表
029GS061=093]125}030RS062>094^126~031US063?095_127DEL
这样我们就在常用字符和字节数据之间建立了一一对应的关系,那么现在一个字节就既可以代表一个整数又可以代表一个字符了,但它本质上只是一个字节的数据,而我们赋予了它不同的涵义,什么时候赋予它哪种涵义就看编程者的意图了。ASCII 码在单片机系统中应用非常广泛,我们后续的课程也会经常使用到它,下面我们来对它做一个直观的认识,同学们一定要深刻理解其本质。
对照上述表格,我们就可以实现字符和数字之间的转换了,比如还是这个程序,我们发送的时候改成字符格式发送,接收还是用十六进制接收,这样接收和数码管好做一下对比。
我们用字符格式发送一个小写的 a,返回一个十六进制的 0x61,数码管上显示的也是61,ASCII 码表里字符 a 对应十进制是97,等于十六进制的 0x61;我们再用字符格式发送一个数字1,返回一个十六进制的 0x31,数码管上显示的也是31,ASCII 表里字符1对应的十进制是49,等于十六进制的 0x31。这下大家就该清楚了:所谓的十六进制发送和十六进制接收,都是按字节数据的真实值进行的;而字符格式发送和字符格式接收,是按 ASCII 码表中字符形式进行的,但它实际上最终传输的还是一个字节数据。这个表格,当然不需要大家去记住,理解它,用的时候过来查就行了。
通信的学习,不像前边控制部分那么直观了,通信部分我们的程序只能获得一个结果,而其过程我们却无法直接看到,所以慢慢的可能大家就会知道有示波器和逻辑分析仪这类测量仪器。如果学校实验室或者公司里有示波器或者逻辑分析仪这类仪器,可以拿过来抓一下串口波形,直观的了解一下。如果暂时还没有这些仪器,先知道这么回事,有条件再说。因为工具类设备有的比较昂贵,有条件可以尽量使