当前位置:首页 > 单片机 > 单片机
[导读]很多的嵌入式系统都需要人机交互,对于输出设备,LCD以其显示质量高、画面效果好等优点得到了极其广泛的应用。s3c2416包含了一个LCD控制器,笔者此处就s3c2416的LCD应用作一个简单的介绍。1、LCD控制器概述1.1. 接口

很多的嵌入式系统都需要人机交互,对于输出设备,LCD以其显示质量高、画面效果好等优点得到了极其广泛的应用。s3c2416包含了一个LCD控制器,笔者此处就s3c2416的LCD应用作一个简单的介绍。

1、LCD控制器概述1.1. 接口

s3c2416的LCD控制器包含了一系列的逻辑单元用以支持把图像数据从系统主存储中的帧缓存传输到外部的LCD驱动接口中。LCD的驱动接口支持RGB和i80总线的显示设备。i80是intel提出的标准总线,如目前还在大量使用的8位51单片机,其存储器接口即为i8080接口。这种接口的显示屏内置LCD驱动芯片,有自己的帧缓存,能够自刷新,因此,处理器可以仅在需要修改屏幕显示时传输显示数据到LCD接口中。这种屏需解码处理器过来的命令数据,写屏速度较慢,适用于小尺寸的LCD屏。RGB显示屏显存由系统内存充当,处理器只要把显示的数据写入到相应的帧缓存中,启动显示后,LCD控制器通过专用DMA自动把显存的数据经接口传输到LCD屏中。因此,RGB屏的显示速度可以很快,常用于大尺寸的LCD屏中。笔者采用的是800*480像素点、16位RGB接口屏,因此以RGB接口屏作为讲解。

1.2. 虚拟屏幕

s3c2416 LCD控制器支持虚拟屏幕,可以设置一个较大的帧缓存,用来作为显示数据的缓冲池,屏幕大小是有限的,显示的数据也是有限的,可能只能显示帧缓存的一部分,所以将屏幕要显示的那部分内容叫做帧视口(View Port)。当需要水平或垂直滚屏时,只需更改帧视口相应的地址寄存器即可显示帧缓存中这部分的内容。例如,我们手机的地图应用,手机屏幕能看到的地图只是其中一部分,可以来回拖动看地图的相邻部分,而无需处理器在拖动时更改帧缓存的数据,提高系统性能。

图1-1. 虚拟屏幕滚动实例

1.3. 窗口混合

s3c2416 LCD控制器具有二层窗口,窗口0数据与窗口1对应数据经过alpha混合后再实际输出到屏接口中,其作用就是实现一种半透明(透明度0~1)的效果。可以选择平面混合,也可以选择像素混合,平面混合就是对窗口0与窗口1的所有像素点进行alpha混合,像素混合就是可以定义一种基色值,当窗口中的相应像素色值匹配到设定的基色时,可设定为完全透明,即直接看到背景窗口,窗口未匹配到基色的部分可以设定为原样显示。如果读者了解photoshop的话,窗口混合就像两个图层可以设置不同的透明度混合显示,或上一图层删除选区外的图像(透明基色),实现选中的物体贴合在背景图片上。这种特性可以在我们鼠标光标、不规则按钮的实现等应用中。这种特性可以减少系统总的数据速率,增强系统性能。

图1-2 alpha混合以及基色应用

2. 驱动实现2.1. RGB驱动编写要点

LCD在使用前需要根据所用屏的参数进行初始化设置,之后上层即可正确调用模块提供的底层驱动函数,实现相应的显示。

设置信号线,RGB接口需用到RGB_HSYNC、RGB_VSYNC、RGB_VCLK、RGB_VDEN、RGB_VD[23:0],从引脚配置寄存器GPCCON、GPDCON中选择相应引脚功能。

设置RGB的数据格式,如设置屏的色深,像素在帧缓存中存放方式是高位在前还是低位在前,笔者使用的是16bpp (non-palletized, R: 5-G:6-B:5 ),像素数据在帧缓存存放方式需半字交换,在WINCON0、WINCON1中进行相应的设置。

设置数据传输时钟,LCD需要一个同步时钟来接收数据,这个参数也决定LCD屏刷新频率。通常LCD屏的刷新频率在60HZ~100HZ之间,低于60HZ,显示可能会闪烁,刷新频率过高也将造成LCD控制器数据传输率大大增加,虽然LCD控制器有LCD-DMA,数据传输时不占用cpu,但需占用系统总线,总线负载大,系统的性能受到影响。通常这个参数根据屏spec进行设置,笔者设置为33M(屏要求26.4M~46.8M)。

时序控制参数设置,根据屏的spec设定VBPD、VFPD、VSPW、HBPD、HFPD、HSPW,这些参数设置均有一定的裕度。VBPD(verticalbackporch)表示在一帧图像开始时,垂直同步信号以后的无效的行数;VFBD(verticalfrontporch)表示在一帧图像结束后,垂直同步信号以前的无效的行数;VSPW(verticalsyncpulsewidth)表示垂直同步脉冲的宽度,用行数计算;HBPD(horizontalbackporch)表示从水平同步信号开始到一行的有效数据开始之间的VCLK的个数;HFPD(horizontalfrontporth)表示一行的有效数据结束到下一个水平同步信号开始之间的VCLK的个数;HSPW(horizontalsyncpulsewidth)表示水平同步信号的宽度,用VCLK计算。

屏像素大小设置,屏实际水平像素点减1值(HOZVAL),垂直像素点减1值(LINEVAL)写入到VIDTCON2寄存器中。

帧缓存的地址设置,在窗口0与窗口1中相应的帧缓存地址寄存器中写入帧起启地址以及结束地址。

启用相应的显示窗口、启动LCD控制逻辑进行数据传输并开启背光。

2.2. 编程实现

LCD正确初始化完后,还需各种功能调用实现对屏的驱动显示。如最基本的画点、画线、清屏、显示字符、显示图形等功能。这些功能在各种GUI中均有实现,因此,笔者此处只给出GUI移植时最基本的设置某个像素、读取某个像素的函数实现,其余屏操作实现不再重述。在main.c测试代码中将给出双窗口显示,字体在背景中水平滚动的实例,以让读者对s3c2416 LCD控制器双窗口、alpha混合有一个了解,这种特性在一些应用中是非常有作用的。

模块lcd_rgb.c驱动实现如下:

#include"s3c2416.h"

#include "lcd_rgb.h"

#define VBPD 15

#define VFPD 5

#define VSPW 5

#define HBPD 25

#define HFPD 88

#define HSPW 20

static unsigned shortFrameBuffer[HSize*VSize];

unsigned short*GetFrameBuffer()

{

return FrameBuffer;

}

void LCD_Enable(intEnable)

{

if (Enable) {

rVIDCON0 "= (0x03 << 0);

} else {

rVIDCON0 &= ~(0x03 << 0);

}

}

voidLCD_BackLight(int On)

{

rGPBCON &= ~(0x3 << 0);

rGPBCON |= (0x1 << 0);

if (On) {

rGPBDAT |= (0x1 << 0);

} else {

rGPBDAT &= ~(0x1 << 0);

}

}

void LCD_RGB_Init()

{

rGPCCON = 0xaaaa02aa; // GPC配置为RGB数据[7:0]、控制功能

rGPDCON = 0xaaaaaaaa; // GPD配置为RGB[23:8]

LCD_Enable(0);

// 16bpp (R5-G6-B5),第一像素在内存低地址,选择buffer0

rWINCON0 = (5<<2) | (1<<16) |(0<<23);

rWINCON1 = (5<<2) | (1<<16) |(1<<6);

// 选择HCLK=100M,3分频得到VCLK=33.3M,RGB并口格式(RGB),暂不启动控制逻辑

rVIDCON0 = (0<<22) |(0<<13) | (0<<12) | (2<<6) |

(1<<5) | (1<<4) | (0<<2) |(0<<0);

// VCLK下降沿锁存数据,行场同步信号低激活,数据使能高有效

rVIDCON1 = (0<<7) |(1<<6) | (1<<5) | (0<<4); //设置时序控制参数

rVIDTCON0 =((VBPD-1)<<16) | ((VFPD-1)<<8) | ((VSPW-1)<<0);

rVIDTCON1 =((HBPD-1)<<16) | ((HFPD-1)<<8) | ((HSPW-1)<<0);

// 设置屏幕像素尺寸

rVIDTCON2 =((VSize-1)<<11) | ((HSize-1)<<0);

// 设置OSD图像与屏幕尺寸一致

rVIDOSD0A = (0<<11) |(0<<0);

rVIDOSD0B = ((HSize-1)<<11)| ((VSize-1)<<0);

rVIDOSD1A =(0<<11) | (0<0);

rVIDOSD1B = ((HSize-1)<<11) |((VSize-1)<<0);

// alpha混合方式,基色匹配时全透明,未匹配部分完全不透明

rVIDOSD1C = 0xfff000;

// 设置帧缓存的地址

rVIDW00ADD0B0 = (unsigned int)FrameBuffer;

rVIDW00ADD1B0 = ((unsigned int)(FrameBuffer+ HSize*VSize) & 0xffffff);

// 不使用虚拟屏幕

rVIDW00ADD2B0 = (00<<13) |((HSize*2)<<0);

// 窗口0使用

rWINCON0 |= (1 << 0);

LCD_Enable(1);

LCD_BackLight(1);

}

voidLCD_ClearScreen(unsigned short BackColor)

{

unsigned int i;

for (i=0; i

FrameBuffer[i] = BackColor;

}

}

voidLCD_SetPixel(unsigned int x, unsigned int y, unsigned short Color)

{

/* if ((x >= HSize) || (y >= VSize)) {

return;

}

*/

FrameBuffer[y*HSize+x] = Color;

}

unsigned shortLCD_GetPixel(unsigned int x, unsigned int y)

{

/*

if ((x >= HSize) || (y >= VSize)) {

return 0;

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭