当前位置:首页 > 单片机 > 单片机
[导读]1. 前言bxCAN是STM32系列最稳定的IP核之一,无论有哪个新型号出来,这个IP核基本未变,可见这个IP核的设计是相当成熟的。本文所讲述的内容属于这个IP核的一部分,掌握了本文所讲内容,就可以很方便地适用于所有STM32

1. 前言

bxCAN是STM32系列最稳定的IP核之一,无论有哪个新型号出来,这个IP核基本未变,可见这个IP核的设计是相当成熟的。本文所讲述的内容属于这个IP核的一部分,掌握了本文所讲内容,就可以很方便地适用于所有STM32系列中包含bxCAN外设的型号。有关bxCAN的过滤器部分的内容在参考手册中往往看得“不甚明白“,本文就过滤器的4种工作模式进行详细讲解并使用具体的代码进行演示,这些代码都进行过实测验证通过的,希望能给读者对于bxCAN过滤器有一个清晰的理解。


2. 准备工作2.1.为什么要过滤器?

在这里,我们可以将CAN总线看成一个广播消息通道,上面传输着各种类型的消息,好比报纸,有体育新闻,财经新闻,政治新闻,还有军事新闻,每个人都有自己的喜好,不一定对所有新闻都感兴趣,因此,在看报纸的时候,一般人都是只看自己感兴趣的那类新闻,而过滤掉其他不感兴趣的内容。那么我们一般是怎么过滤掉那些不感兴趣的内容的呢?下面有两种方法来实现这个目的:

第一种方法:

每次看报纸时,你都看下每篇文章的标题,如果感兴趣则继续看下去,如果不感兴趣,则忽略掉。

第二种方法:

你告诉邮递员,你只对财经新闻感兴趣,请只将财经类报纸送过来,其他的就不要送过来了,就这样,你看到的内容必定是你感兴趣的财经类新闻。

上面那种方法好呢?很明显,第二种方法是最好的,因为你不用自己每次判断哪些新闻内容是你感兴趣的,可以免受“垃圾”新闻干扰,从而可以节省时间忙其他事。bxCAN的过滤器就是采用上述第二种方法,你只需要设置好你感兴趣的那些CAN报文ID,那么MCU就只能收到这些CAN报文,是从硬件上过滤掉,完全不需要软件参与进来,从而节省了大大节省了MCU的时间,可以更加专注于其他事务,这个就是bxCAN过滤器的意义所在。

2.2.两种过滤模式(列表模式与掩码模式)

假设我们是bxCAN这个IP的设计者,现在由我们来设计过滤器,那么我们该如何设计呢?

首先我们是不是很快就会想到只要准备好一张表,把我们需要关注的所有CAN报文ID写上去,开始过滤的时候只要对比这张表,如果接收到的报文ID与表上的相符,则通过,如果表上没有,则不通过,这个就是简单的过滤方案。恭喜你!bxCAN过滤器的列表模式采用的就是这种方案。

但是,这种列表方案有点缺陷,即如果我们只关注一个报文ID,则需要往列表中写入这个ID,如果需要关注两个,则需要写入两个报文ID,如果需要关注100个,则需要写入100个,如果需要1万个,那么需要写入1万个,可问题是,有这个大的列表供我们使用吗?大家都知道,MCU上的资源是有限的,不可能提供1万个或更多,甚至100个都嫌多。非常明显,这种列表的方式受到列表容量大小的限制,实际上,bxCAN的一个过滤器若工作在列表模式下,scale为32时,每个过滤器的列表只能写入两个报文ID,若scale为16时,每个过滤器的列表最多可写入4个CAN ID,由此可见,MCU的资源是非常非常有限的,并不能任我们随心所欲。因此,我们需要考虑另外一种替代方案,这种方案应该不受到数量限制。

下面假设我们是古时候一座城镇的守卫,城主要求只有1156年出生的人才可以进城,我们又该如何执行呢?假设古时候的人也有类似今天的身份证(...->_<-…),大家都知道,身份份证号码中有4位是表示出生年月,如下图:


图 1 18位身份证号码的各位定义

如上图,身份证中第7~10这4位数表示的是出生年份,那么,我们可以这么执行:

检查想要进城的所有人的身份证号码的第7~10位数字,如果这个数字依次为1156则可以进入,否则则不可以,至于身份证号码的其他位则完全不关心。假如过几天城主放宽进城条件为只要是1150年~1160前的人都可以进城,那么,我们就可以只关注身份证号码的第7~9这3位数是否为115就可以了,对不对?这样一来,我们就可以非常完美地执行城主的要求了。

再变下,假设现在使用机器来当守卫,不再是人来执行这个“筛选”工作。机器是死的,没有人那么灵活,那么机器又该如何执行呢?

对于机器来说,每一步都得细化到机器可以理解的程度,于是我们可以作如下细化:

第一步:获取想进城的人的身份证号码

第二步:只看获取到身份证的第7~9位,其他位忽略

第三步:将忽略后的结果与1156进行比较

第四步:比较结果相同则通过,不同则不能通过

这种方式,我们称之为掩码模式。

2.3.验证码与屏蔽码

仔细查看上面4个步骤,这不就是C代码中的if语句吗?如下:


if(x&y==z)//x表示待检查身份证号码,y表示只关注第7~9位的屏蔽码,Z则为1156,这里叫做验证码

{

//可以通过

}

else

{

//不可以通过

}


对于机器来说,我们要为它准备好两张纸片,一片写上屏蔽码,另一片纸片写上验证码,屏蔽码上相应位为1时,表示此位需要与验证码对应位进行比较,反之,则表示不需要。机器在执行任务的时候先将获取的身份证号码与屏蔽码进行“与”操作,再将结果与验证码的进行比较,根据判断是否相同来决定是否通过。整个判别流程如下所示:

图 2 掩码模式的计算过程

从上图可以很容易地理解屏蔽码与验证码的含义,这样一来,能通过的结果数量就完全取决于屏蔽码,设得宽,则可以通过的多(所有位为0,则不过任何过滤操作,则谁都可以通过),设得窄,则通过的少(所有位设为1,则只有一个能通过)。那么知道这个有什么用呢?因为bxCAN的过滤器的掩码模式就是采用这种方式,在bxCAN中,分别采用了两个寄存器(CAN_FiR1,CAN_FiR2)来存储屏蔽码与验证码,从而实现掩码模式的工作流程的。这样,我们就知道了bxCAN过滤器的掩码模式的大概工作原理。


但是,我们得注意到,采用掩码模式的方式并不能精确的对每一个ID进行过滤,打个比方,还是采用之前的守卫的例子,假如城主要求只有1150~1158年出生的人能通过,那么,若我们还是才用掩码模式,那么掩码就设为第7~9位为”1”,对应的,验证码的7~9位分别为”115”,这样就可以了。但是,仔细一想,出生于1159的人还是可以通过,是不是?但总体来说,虽然没有做到精确过滤,但我们还是能做到大体过滤的,而这个就是掩码模式的缺点了。在实际应用时,取决于需求,有时我们会同时使用到列表模式和掩码模式,这都是可能的。


2.4.列表模式与掩码模式的对比

综合之前所述,下面我们来对比一下列表模式与掩码模式这两种模式的优缺点。


模式优点缺点列表模式能精确地过滤每个指定的CAN ID有数量限制掩码模式取决于屏蔽码,有时无法完全精确到每一个CAN ID,部分不期望的CAN ID有时也会收到数量取决于屏蔽码,最多无上限



2.5.标准CAN ID与扩展CAN ID



1986 年德国电气商BOSCH公司开发出面向汽车的CAN 通信协议,刚开始的时候,CAN ID定义为11位,我们称之为标准格式,ISO11898-1标准中CAN的基本格式如下图所示:

图 3 标准CAN报文格式定义


如上图所示,标准CAN ID存放在上图ID18~ID28中,共11位。随着工业发展,后来发现11位的CAN ID已经不够用,于是就增加了18位,扩展CAN ID到29位,如下图所示:


图 4 扩展CAN报文格式定义

从上图对比扩展CAN报文与标准CAN报文,发现在仲裁域部分,扩展CAN报文的CAN ID包含了base Identifier与extension Identifier,即基本ID与扩展ID,而标准CAN报文的CAN ID部分只包含基本ID,扩展ID(ID0~ID17)被放在基本ID的右方,也就是说,属于低位。知道这些有什么用呢?至少我们可以得到这两条信息:


标准ID一般小于或等于<=0x7FF(11位),只包含基本ID。

对于扩展CAN的低18位为扩展ID,高11位为基本ID。



例如标准CAN ID 0x7E1,二进制展开为0b 0[111 1110 0001],只有中括号内的11位才有效,其全部是基本ID。

再例如扩展CAN ID 0x1835f107,二进制展开为0b 000[1 1000 0011 10][01 11110001 0000 0111],只有红色中括号和绿色中括号内的位才有效,总共29位,左边红色中括号中的11位为基本ID,右边绿色中括号内的18位为扩展ID,请记住这个信息!知道这个之后,我们可以很方便地将一个CANID拆分成基本ID和扩展ID,这个也将在后续的内容中多次用到,再次留意一下,扩展ID是位于基本ID的右方,在扩展CAN ID的构成中,扩展ID位于低18位,而基本ID位于高11位,于是要获取一个扩展CANID的基本ID,就只需要将这个CANID右移18位(这种算法后续将多次用到,请务必记住!)。

3. bxCAN的过滤器的解决方案

终于进入到正题了!前面已经介绍了过滤器的列表模式与掩码模式,以及掩码模式下的屏蔽码与验证码的含义,还介绍了标准CAN ID与扩展CAN ID的组成部分。现在我们终于要站在bxC

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭