ARM 系列 -- FS2410 开发板上的中断编程
扫描二维码
随时随地手机看文章
一、目的
中断服务程序在操作系统中无疑占有非常重要的地位,编写中断程序不仅要会运用底层的汇编语言,还要了解 ARM 的体系架构。那这一节我们就通过中断编程来响应 FS2410开发板上的 16 个按键,实现依次按下16个键时,D9~D12 四个 Led 从 0~15 进行计数,并通过上个实验实现的 uart_printf 向串口发送数据 Kn is pressed!。
二、代码
我们直接分析代码,代码中只有简略的注释,必要时我会在整个代码文件的后面对相应的细节进行解释。先来分析 head.s:
@文件 head.s
.text
.global _start
_start:
@ Set vector table for interrupt
b reset
b HandleIRQ
b HandleIRQ
b HandleIRQ
b HandleIRQ
b HandleIRQ
b HandleIRQ @ handle irq interrupt here
b HandleIRQ
reset:
ldr r0, =0x53000000@ Close Watch Dog Timer
mov r1, #0x0
str r1, [r0]
@ disable all interrupts
mov r1, #0x4A000000
mov r2, #0xffffffff
str r2, [r1, #0x08] @ set INTMSK
ldr r2, =0x7ff
str r2, [r1, #0x1C] @ set INTSUBMSK
bl memory_setup@ Initialize memory setting
bl flash_to_sdram@ Copy code to sdram
msr cpsr_c, #0xd2@ set irq mode stack
ldr pc, =set_sp @ jump to addr 0x3000000
set_sp:
ldr sp, =0x31000000
msr cpsr_c, #0xdf@ set system mode stack
ldr sp, =0x32000000
bl init_irq @ Call init_irq
msr cpsr_c, #0x5f@ set system mode and open the irq
ldr sp, =0x34000000@ Set stack pointer
bl main
loop:
b loop
HandleIRQ:
sub lr, lr,#4 @ get the return addr
stmdb sp!, { r0-r12,lr } @ store used registers in stack
ldr lr, =int_return @ set retrun addr
ldr pc, =EINT_Handle @ jump to the interrup processing function
int_return:
ldmia sp!, { r0-r12,pc }^
呵呵,不知不觉 head.s 的代码已经很长了,我们来看一下它的执行流程:
(1) 设置中断向量表。你也许在这里有疑问,为什么一开始就有 8 个分支跳转指令?我们先来研究一下 ARM 如何响应异常/中断,看下表:
-------------------------------------------------------------
Exception Mode Address
-------------------------------------------------------------
Reset Supervisor0x00000000
Undefined Undefined0x00000004
Software InteruptSupervistor0x00000008
Prefetch AbortAbort 0x0000000C
Data AbortAbort0x00000010
IRQ (interupt)IRQ0x00000018
FIQ (fast interupt)FIQ0x0000001C
-------------------------------------------------------------
可以看出 ARM 支持 7 种异常/中断,每种异常/中断都有固定的地址,这个地址叫 中断向量,一般我们会在这个地址放一条分支跳转指令,当异常/中断发生时,ARM 就到这个地址执行这个跳转指令,从而调用相应的中断服务程序。
等等,这里是不是有点问题?呵呵,你也许已经发现了,这里只有 7 种异常/中断,那我们的程序怎么会有 8 条分支跳转指令呢? 因为中断向量即地址 0x00000014 被ARM保留用做将来扩展之用,但我们还需用一条指令(4字节)来填充这个位置,只不过它不会被 ARM 执行。
(2) 关闭看门狗
(3) 暂时屏蔽所有中断。
1.地址 0x4A000008 是中断屏寄存器 INTMSK 的端口地址,复位 INTMSK 会导致所有的中断源被屏掉。
2.地址 0x4A00001C 是子中断屏寄存器 INTSUBMSK 的端口地址,它的低 11 位对应外部 11 个中断源,高 21 位保留不用。复位它的低 11 位会导致相应的外部中断被屏。
(4) 初始化内存 SDRAM 设置
(5) Self-copying: 从 Nand Flash 将自身复制到 SDRAM
(6) 进入 IRQ 模式,设置 IRQ 模式下的堆栈寄存器
(7) 进入系统模式,并设置系统模式下的堆栈寄存器
(8) 系统模式下调用 init_irq,这个函数用于初始化一些用于响应按键的中断寄存器
(9) 再次进入系统模式,并打开当前程序状态寄存器 cpsr 的 IRQ 中断位,这样 ARM 就能响应 IRQ 中断了
(10)执行主函数 main 后返回,然后进入死循环,等待中断发生
(11)中断发生时,ARM 响应中断并于 0x00000018 处执行 b HandleIRQ 跳转指令调用中断服务程序,处理完毕后返回循环处再等待下次中断的发生,如此往复...
这就是中断处理的基本流程了 :-), 以下文件的代码在前面随笔均有详细说明,这里就仅附简略注释了
@ 文件 flash.s
@ 作用:设置 Nand Flash 的控制寄存器、读取 Nand Flash
@ 中的代码到 SDRAM 的指定位置,更多细节请参考我前面的随笔
.equ NFCONF, 0x4e000000
.equ NFCMD, 0x4e000004
.equ NFADDR, 0x4e000008
.equ NFDATA, 0x4e00000c
.equ NFSTAT, 0x4e000010
.equ NFECC, 0x4e000014
.global flash_to_sdram
flash_to_sdram:
@ Save return addr
mov r10,lr
@ Initialize Nand Flash
mov r0,#NFCONF
ldr r1,=0xf830
str r1,[r0]
@ First reset and enable Nand Flash
ldr r1,[r0]
bic r1, r1, #0x800
str r1,[r0]
ldr r2,=NFCMD
mov r3,#0xff
str r3,[r2]
@ for delay
mov r3, #0x0a
1:
subs r3, r3, #1
bne 1b
@ Wait until Nand Flash bit0 is 1
wait_nfstat:
ldr r2,=NFSTAT
ldr r3,[r2]
tst r3,#0x01
beq wait_nfstat
@ Disable Nand Flash
ldr r0,=NFCONF
ldr r1,[r0]
orr r1,r1,#0x8000
str r1,[r0]
@ Initialzie stack
ldr sp,=4096
@ Set arguments and call
@ function nand_read defined in nand_read.c
ldr r0,=0x30000000
mov r1,#0
mov r2,#1024*40
bl nand_read
@ return
mov pc,r10