当前位置:首页 > 显示光电 > 显示光电
[导读] 摘要:在LED的PN结上施加正向电压时,PN结会有电流流过。电子和空穴在PN结过渡层中复合会产生光子,然而并不是每一对电子和空穴都会产生光子,由于LED的PN结作为杂质半导体,存在着材料品质、位错因素以及工艺上的种种缺陷,会产生杂质电离、激发散射和晶格散射等问题,使电子从激发态跃迁到基态时与晶格原子或离子交换能量时发生无辐射跃迁,也就是不产生光子,这部分能量不转换成光能而转换成热能损耗在PN结内,于是就有一个复合载流子转换效率,并用符号nint表示。 <--简介信息--> 关键字:LED [3735篇] 光效率 [16篇]

LED的PN结上施加正向电压时,PN结会有电流流过。电子和空穴在PN结过渡层中复合会产生光子,然而并不是每一对电子和空穴都会产生光子,由于LED的PN结作为杂质半导体,存在着材料品质、位错因素以及工艺上的种种缺陷,会产生杂质电离、激发散射和晶格散射等问题,使电子从激发态跃迁到基态时与晶格原子或离子交换能量时发生无辐射跃迁,也就是不产生光子,这部分能量不转换成光能而转换成热能损耗在PN结内,于是就有一个复合载流子转换效率,并用符号nint表示。
  
  nint=(复合载流子产生的光子数/复合载流子总数)×100%
  
  当然,很难去计算复合载流子总数和产生的光子总数。一般是通过测量LED输出的光功率来评价这一效率,这个效率nint就称为内量子效率。
  
  提高内量子效率要从LED的制造材料、PN结外延生长工艺以及LED发光层的出光方式上加以研究才可能提高LED的nint,这方面经过科技界的不懈努力,已有显著提高,从早期的百分之几已提高到百分之几十,有了长足的进步,未来LED发展,还有提高nint的很大空间。
  
  假设LEDPN结中每个复合载流子都能产生一个光子,是不是可以说,LED的电一光转换效率就达到100%?回答是否定的。
  
  从半导体理论可以知道,由于不同的材料和外延生长工艺的不同,所制成的LED的发光波长是不同的。假设这些不同发光波长的LED其内量子效率均达到100%,但由于一个电子N型层运动到PN结有源层和一个空穴从P型层运动到PN结有源层,产生复合载流子所需的能量E与不同波长的LED的能带位置相关都不一样。而不同波长的光子的能量E也是不同的,电能到光能的变换有必然的损耗,下面举例加以说明:
  
  例如一个入D=630nm的GaInAlP四元橙色LED,其正向偏置为VF≈2.2V,于是意味着它的一个电子与一个空穴复合成一个载流子所需的电势能ER=2.2Ev,而一个入D=630nm的光子的势能为E=hc/入D≈1240/630≈1.97eV,于是电能到光能的转换效率n(e-L)=1.97/2.2×100%≈90%,即有0。0.23eV的能量损失(eV为电子伏)。
  
  如果对一个GaN的蓝光470nm的LED,则VF≈3.4V,于是EB≈3.4EeV,而EB≈1240/470≈2.64eV,于是Nb=2.64/3.4×100%≈78%,这是在假定nint=100%时。若nint=60%,则对于红色LED,n(e-L)=90%×60%=54%,而对于蓝色LED则有n(e-L)B=78%×60%=47s%。可见,这就是LED的光一电转换效率不是很高的原因。
  
  上面已经了解到LEDPN结有源层的电一光转换效率不是很高,有相当一部分电能没有转换成光能,而是转换成热能损耗在PN结内,成为PN结的发热源。业界正在通过材料、工艺等机理上的努力去提高这一效率。如果施加在LED上的电功率全部变成光子能量,那么要问:这些光子能否全部逸出到空气中&ldquo;看见”?回答也是否定的。于是就有一个LED光子逸出率的问题存在。可以这样来表示LED中产生的光子逸出到空气中的比率。

nout=(逸出到空气中的光子数/PN结产生的光子总数)×100%
  
  以上公式可以为LED的内量子效率。为方便说明,我们假定LED的材料为GaAs,其材料的折射系数为n1=3.9,与芯片接触的界面是空气,它的光折射系数n0=1,由光传播理论的光线折射定律可以知道,两种不同界面的折射系数不相同时,其垂直于界面的光的反射函数可用下式来表示:
  
  R(L)=[(n1-n0)/(n1+n0)]2×100%
  
  对于GaAs与空气,则有,
  
  R(L)=[(3.9-1)/(3.9+1)]2×100%=35.02
  
  这就是说,有35.02%的光子将被反射回GaAs材料中,即反射回芯片内,不能逸出到空气中,仅有64.98%有可能逸出到空气中。然而,LED的发光若是一个点光源时,其边界全发射临界的半角θc与界面两种材料的折射系数有关,并由以下公式确定:θc=arcsin(ndn1)
  
  对于GaAs和空气:θc=arcsin(1/3.9)=14.90°
  
  边界全发射临界角为29.8°,超过这个角度不能发射到空气中,显然这对一个球面而言,这个角度仅8.27%的区域能全发射,显然内量子效率是极低的。
  
  当然对LED芯片来说,它是一个六面体,并非点光源,在不计电极挡光时,这个六面体的六个面均可有一个全发光临界角,共有49.6%的出光区域。事实上,LED由于要引出电极、固定在引线框架上等原因,还做不到六个面出光,也就是达不到49.6%的全发射区域。LED内量子效率一般仅在20%左右,它还有很大的提升空间,就是要综合LED芯片结构、封装结构、材料折射系数等方面因素加以解决,来提高出光效率。
  
  近年因为环保、节能、半导体的综合优势,LED取代传统光源用于常规照明已锋芒毕露,但要LED的发光效率有更大的突破才可以实现广泛应用,因为发光效率是应用的必须数据,要提高发光效率就跟以上内量子效率与电光效率息息相关!取代传统照明必须的也是技术提高带动成本下降,半导体照明才可以发挥科技优势!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

作为LED电源的一种,LED路灯电源是目前国内照明市场中重要的组成环节,正在逐渐取代传统道路照明模式。

关键字: LED 电源驱动 MOS管

DC电压从“+48V、GNG”两端进来通过R1的电阻,此电阻的作用是限流,若后面的线路出现短路时,R1流过的电流就会增大,随之两端压降跟着增大。

关键字: LED 驱动电路

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源

2024年6月11日,2024第十二届阿拉丁论坛「AI+智能健康照明创新大会」在广州光亚展A展区6.1馆盛大举办现场拉开帷幕。智谋纪创始人&CEO朱东亮先生受邀出席论坛,带来题为《AI+ Multi LED,打开人类健康...

关键字: AI LED

在下述的内容中,小编将会基于FPGA开发板去点亮LED灯

关键字: FPGA LED 开发板

5月28日,记者从在北京召开的新闻发布会上获悉,由中国光学光电子行业协会液晶分会主办的DIC系列会展活动——中国(上海)国际显示产业高峰论坛暨国际(上海)显示技术及应用创新展将于2024年7月2-5日在上海举行。

关键字: LED 折叠屏手机 车载视窗

Holtek新推出具多功能的LED Lighting Touch IC BS45B2210。主要特色为整合触控按键及内建七种模式LED应用功能,可通过OPTION引脚供使用者选用,提供两路PWM驱动LED控制,支持三段固...

关键字: LED OPTION引脚

LED开关电源过电流保护电路、LED开关电源过电压保护电路、LED开关电源软启动保护电路、LED开关电源过热保护电路……行内人士贡献几大实用电路图,同你做好LED开关电源的保护设计。

关键字: LED 开关电源 过电流保护

魁北克城2024年5月9日 /美通社/ -- LeddarTech Holdings Inc. ("LeddarTech")(纳斯达克:LDTC)和Immervision Inc. 欣然共同宣布了一项合作,旨在简化...

关键字: LED ADAS 人工智能 传感器
关闭
关闭