当前位置:首页 > 显示光电 > 显示光电
[导读] 3 预充电技术OLED是电流控制的器件,它的亮度和电流通过的平均时间成比例,当电流未到OLED的发光阈值前,器件的发光亮度很小,当电流达到其发光阈值后,OLED会随着电流增加发光强度增大。一个OLED单元可以简化成一个

 3 预充电技术

OLED是电流控制的器件,它的亮度和电流通过的平均时间成比例,当电流未到OLED的发光阈值前,器件的发光亮度很小,当电流达到其发光阈值后,OLED会随着电流增加发光强度增大。一个OLED单元可以简化成一个LED和一个20~30 PF的寄生电容并联,如图3所示,要使OLED发光,电流源首先要将电容充电到OLED的发光电压,则充电时间会比较长,响应时间会比较慢。因此,可以在电流源驱动电路中加入预充电电路,先对其电容预充电到预先计算的电压,该电压略小于其阈值电压VTH,后再用准确的恒流源来驱动,从而提高其电光响应速度。

 

 

 

 

由图4所示波形可以看出,在一个扫描周期内,Common为低电平,Segment经历3个阶段分别为:

discharge、precharge、display,这3个阶段原理图如图5所示。

 

 

理论上在一个扫描周期内,首先是precharge动作,然后是display动作,其次是discharge动作。

但是从图4所示的Segment和Commmon显示波形中可以看出,在实际应用的一个扫描周期内,首先是discharge动作,然后是precharge动作,其次是display动作,原因是由于屏的制作工艺和相邻的行列电极之间的漏电使相邻像素电容上存有部分电荷,当下一个扫描周期开始时,直接充电,会使CD 两端电压超过PMOLED的阈值电压,导致电流源不能准确控制其发光亮度。所以在一个扫描周期内,首先将CD 两端电压放掉,再充电置阈值电压以下,后用准确的电流源控制其发光亮度,提高其显示对比度。

当行扫描开始后,先采用图5(a)所示电路对 CD放电,行列驱动电路均接地,使电容两端电压为零。

放电结束后,利用图5(b)所示电路对CD 充电,充电过程中,行驱动电路接地,列驱动电路接充电电压PRE V .

预充电结束后,利用图5(c)所示电路进入发光阶段,此时扫描行的CD两端电压为PRE V (接近OLED阈值电压),行驱动电路接地,列驱动电路接恒流源,这样在很大程度上减少了电流源对电容的充电时间;非扫描行驱动电路接高电平VOH,流过PMOLED的电流为I,CD 两端电压为VCS,VCS-VOH小于OLED的阈值电压,使半选像素点处于截止状态。

4 交叉效应的形成和抑制

OLED是电流型发光器件,从无源驱动内部等效电路结构中,如图6所示。可以看出在OLED驱动电路等效结构中所有行像素都使用同一行电极,并且所有列像素也都使用同一列电极。这样会使被选中像素的相邻像素由于电流的注入而发出微弱的光;除此之外,由于屏的功能膜是直接连接在一起的,相邻的行列电极之间的漏电都会使相邻像素电容存储一定电荷,当电荷积累到OLED发光阈值时就会使相邻的非选通像素发光,造成显示时交叉效应现象的产生。

 

 

通过对图6电路结构的分析得出,OLED的行电极和列电极都是良导体,电极分布电阻远小于电极间的漏电电阻,因此电势均匀分布在每根电极上。由于OLED本身作为有机物构成的具有单向导电性的发光二极管,当列电极电势与行电极电势之间的电势差大于OLED的阈值电压时(如表1所示,表1中VTH为OLED的阈值电压),被选中的OLED才会发光。所以给被选中的行电极接地,选中列的电极上接高,并且保证列电极和行电极之间的压差要大于等于OLED的阈值电压,这样被选通像素就会处于正向电压作用下而发光,反之,给非选中行的电极上接高电压VDD,非选中列电极上接地,这样非中像素处于反向电压的抑制作用下而不发光,从而有效的解决了交叉效应。

5 结语

首先,分析了无源OLED 器件的驱动特点, 由于OLED是电流型器件, 如用恒压源驱动, 由于OLED屏制造工艺的问题使行、列电极上电极电阻不一致,会使屏上各个位置的OLED单元流经的电流不一致,从而影响显示亮度的均匀性,由OLED的伏安特性曲线可以得出即使电压的变换很小也会导致电流的较大波动,而电流源与发光亮度呈现良好的线性关系,故采用电流源驱动。并且为了提高其电光响应速度,达到更好的显示效果,进而提出了预充电技术。

其次,分析了交叉效应产生的原因,根据OLED等效电路结构和制作工艺上的限制以及其单向导电性的特性,采取反向电压抑制法,使非选中像素在反向电压的作用下处于截止状态,从而有效的解决了交叉效应现象对显示的影响。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭