当前位置:首页 > 通信技术 > 通信技术
[导读]介绍了单片射频收发器nRF905的芯片结构、引脚功能、工作模式以及射频接收和发送的工作流程;分析了nRF905片内SPI接口的配置、射频通信相关寄存器的配置;最后给出了典型的应用电路图。

作者Email:  liekie@sina.com

摘 要:本文首先介绍了单片射频收发器nRF905的芯片结构、引脚功能、工作模式以及射频接收和发送的工作流程;然后分析了nRF905片内SPI接口的配置、射频通信相关寄存器的配置;最后给出了典型的应用电路图。

关键词:无线通信;射频;收发器;nRF905

1. 引言

nRF905是挪威Nordic VLSI公司推出的单片射频收发器,工作电压为1.9~3.6V,32引脚QFN封装(5×5mm),工作于433/868/915MHz三个ISM(工业、科学和医学)频道,频道之间的转换时间小于650us。nRF905由频率合成器、接收解调器、功率放大器、晶体振荡器和调制器组成,不需外加声表滤波器, ShockBurstTM工作模式,自动处理字头和CRC(循环冗余码校验),使用SPI接口与微控制器通信,配置非常方便。此外,其功耗非常低,以-10dBm的输出功率发射时电流只有11mA,工作于接收模式时的电流为12.5mA,内建空闲模式与关机模式,易于实现节能。nRF905适用于无线数据通信、无线报警及安全系统、无线开锁、无线监测、家庭自动化和玩具等诸多领域。

2. 芯片结构、引脚介绍及工作模式

2.1芯片结构[1]

   nRF905片内集成了电源管理、晶体振荡器、低噪声放大器、频率合成器功率放大器等模块,曼彻斯特编码/解码由片内硬件完成,无需用户对数据进行曼彻斯特编码,因此使用非常方便。nRF905的详细结构如图1所示。

2.2引脚介绍

 表1:nRF905引脚

2.3工作模式

 nRF905有两种工作模式和两种节能模式。两种工作模式分别是ShockBurstTM接收模式和ShockBurstTM发送模式,两种节能模式分别是关机模式和空闲模式。nRF905的工作模式由TRX_CE、TX_EN和PWR_UP三个引脚决定,详见表2。

2.3.1ShockBurstTM模式

与射频数据包有关的高速信号处理都在nRF905片内进行,数据速率由微控制器配置的SPI接口决定,数据在微控制器中低速处理,但在nRF905中高速发送,因此中间有很长时间的空闲,这很有利于节能。由于nRF905工作于ShockBurstTM模式,因此使用低速的微控制器也能得到很高的射频数据发射速率。在ShockBurstTM接收模式下,当一个包含正确地址和数据的数据包被接收到后,地址匹配(AM)和数据准备好(DR)两引脚通知微控制器。在ShockBurstTM发送模式,nRF905自动产生字头和CRC校验码,当发送过程完成后,数据准备好引脚通知微处理器数据发射完毕。由以上分析可知,nRF905的ShockBurstTM收发模式有利于节约存储器和微控制器资源,同时也减小了编写程序的时间。下面具体详细分析nRF905的发送流程和接收流程。

2.3.1.1发送流程

 典型的nRF905发送流程分以下几步:
A. 当微控制器有数据要发送时,通过SPI接口,按时序把接收机的地址和要发送的数据送传给nRF905,SPI接口的速率在通信协议和器件配置时确定;
B. 微控制器置高TRX_CE和TX_EN,激发nRF905的ShockBurstTM发送模式;
C. nRF905的ShockBurstTM发送:
l 射频寄存器自动开启;
l 数据打包(加字头和CRC校验码);
l 发送数据包;
l 当数据发送完成,数据准备好引脚被置高;
D. AUTO_RETRAN被置高,nRF905不断重发,直到TRX_CE被置低;
E. 当TRX_CE被置低,nRF905发送过程完成,自动进入空闲模式。
ShockBurstTM工作模式保证,一旦发送数据的过程开始,无论TRX_EN和TX_EN引脚是高或低,发送过程都会被处理完。只有在前一个数据包被发送完毕,nRF905才能接受下一个发送数据包。

2.3.1.2接收流程

A. 当TRX_CE为高、TX_EN为低时,nRF905进入ShockBurstTM接收模式;
B. 650us后,nRF905不断监测,等待接收数据;
C. 当nRF905检测到同一频段的载波时,载波检测引脚被置高;
D. 当接收到一个相匹配的地址,地址匹配引脚被置高;
E. 当一个正确的数据包接收完毕,nRF905自动移去字头、地址和CRC校验位,然后把数据准备好引脚置高
F. 微控制器把TRX_CE置低,nRF905进入空闲模式;
G. 微控制器通过SPI口,以一定的速率把数据移到微控制器内;
H. 当所有的数据接收完毕,nRF905把数据准备好引脚和地址匹配引脚置低;
I. nRF905此时可以进入ShockBurstTM接收模式、ShockBurstTM发送模式或关机模式。

当正在接收一个数据包时,TRX_CE或TX_EN引脚的状态发生改变,nRF905立即把其工作模式改变,数据包则丢失。当微处理器接到地址匹配引脚的信号之后,其就知道nRF905正在接收数据包,其可以决定是让nRF905继续接收该数据包还是进入另一个工作模式。

2.3.2节能模式

 nRF905的节能模式包括关机模式和节能模式。
 在关机模式,nRF905的工作电流最小,一般为2.5uA。进入关机模式后,nRF905保持配置字中的内容,但不会接收或发送任何数据。
 空闲模式有利于减小工作电流,其从空闲模式到发送模式或接收模式的启动时间也比较短。在空闲模式下,nRF905内部的部分晶体振荡器处于工作状态。nRF905在空闲模式下的工作电流跟外部晶体振荡器的频率有关。

3. 器件配置

所有配置字都是通过SPI接口送给nRF905。SIP接口的工作方式可通过SPI指令进行设置。当nRF905处于空闲模式或关机模式时,SPI接口可以保持在工作状态。

3.1 SPI接口配置

 SPI接口由状态寄存器、射频配置寄存器、发送地址寄存器、发送数据寄存器和接收数据寄存器5个寄存器组成。状态寄存器包含数据准备好引脚状态信息和地址匹配引脚状态信息;射频配置寄存器包含收发器配置信息,如频率和输出功能等;发送地址寄存器包含接收机的地址和数据的字节数;发送数据寄存器包含待发送的数据包的信息,如字节数等;接收数据寄存器包含要接收的数据的字节数等信息。

3.2射频配置

  射频配置寄存器和内容如表3所示:
 表3:射频配置寄存器

射频寄存器的各位的长度是固定的。然而,在ShockBurstTM收发过程中,TX_PAYLOAD、RX_PAYLOAD、TX_ADDRESS和RX_ADDRESS 4个寄存器使用字节数由配置字决定。nRF905进入关机模式或空闲模式时,寄存器中的内容保持不变。

4. 应用电路

  nRF905在使用中,根据不同需要,其电路图不尽相同,图2所示为典型的应用原理图,该电路天线部分使用的是50Ω单端天线。在nRF905的电路板设计中,也可以使用环形天线,把天线布在PCB板上,这可减小系统的体积。更详细的设计,读者可参考nRF905的芯片手册[2]。

5. 结束语

  nRF905通过SPI接口和微控制器进行数据传送,通过ShockBurstTM收发模式进行无线数据发送,收发可靠,使用方便,在工业控制、消费电子等各个领域都具有广阔的应用前景。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭