应用高速数据采集卡实现WLAN络基频发射模块测试系统
扫描二维码
随时随地手机看文章
随着各种无线通讯标准的制订,无线通讯装置的测试一直是芯片或设备厂商面临的巨大挑战之一。由于无线通讯信号较为特殊,在测试时需要高速(采样高频信号)与高精度(提供足够的动态范围)的数据采集装置,搭配适当的数据分析软件方能完成。在本文中,我们以凌华科技的高速资料采集卡-PXI-9820为核心,配合基于 MATLAB 所开发的测试程序,进行 Wireless LAN 基频发射模块的效能测试。我们将采集基频信号经正交分频多任务(OFDM)调变后的I/Q(in-phase/quadrature)信号,并进行解调与演算,最后得出EVM(Error Vector Magnitude)值,作为判断基频发射模块是否良好的重要指标。
图1 测试系统方块图
图2 基频发射模块测试系统
近年来已有不少公司推出高速数据采集卡 (High Speed Data Acquisition Card), 并且声称可以应用在军用雷达信号分析、超声信号分析、数字广播信号分析,或是喷墨式墨盒系统测试等各个方面。仔细观察一下这些高速数据采集卡的规格: 20~100 MS/s 的采样频率,30~60MHz 的带宽,可以供多组模拟信号同时输入,同时模拟输入的范围可通过软件选择... 等等,的确是有条件可以胜任上述应用,可惜能在报章杂志上见到的应用实例并不多, 也因此无法一窥其中的症结与奥秘。基于此原因,本文拟以凌华科技最近推出的PXI-9820 高速数据采集卡为核心,设计一套成本低廉、 功能弹性且适于大量复制的WLAN发射模块实时误差向量幅度(real-time Error Vector Magnitude, EVM)测试系统,以期能提供给芯片设计与系统生产厂商另一个思考方向。
该系统共分成三大部份:WLAN发射模块、高速数据采集卡及控制器模块、软件接口和EVM计算分析软件模块。
1. WLAN发射模块:
1) 市售无线网卡(802.11.a) + card bus: WLAN发射模块主体。
2) Analog Device Instrument (ADI) 的Evaluation board: 将I+,I-,Q+,Q-差分信号转为单端输出电路之I,Q信号。
2. 高速数据采集卡及控制器模块:
1) ADLINK PXI-3800: Pentium-M 1.6GHz PXI 控制器,实时信号处理。
2) ADLINK PXIS-2506: 3U 6-slot PXI 便携式机箱。
3) ADLINK PXI-9820: 3U PXI 65MS/s,14-bit digitizer with on-board 128MB SDRAM,采集IQ 信号。
3. 软件接口和EVM计算分析软件模块:
1) ADLINK in-house 无线网卡信号控制程序:控制WLAN卡重复的产生传送封包(frame)并传送封包。
2) ADLINK in-house 实时 I-Q 信号分析程序:进行离散快速傅利叶转换,64-QAM,计算EVM等。
图1为测试系统的示意方块图。PXI-3800控制器执行无线网卡信号控制程序,通过 card bus 使无线网卡不断的输出待量测的Tx 信号。因为网卡上的输出信号为I+,I-,Q+,Q-的差分信号 (differential ended),但是我们用的信号采集卡为2个通道(channel)的单端输入(single ended),所以需要用一个转换电路来完成差分信号转换单端输出,这部份我们用ADI的Evaluation board来加以实现。最后将这个待分析的基频IQ信号输入PXI-9820,并以in house 的实时 I-Q 信号分析程序在PXI-3800上进行FFT、 EVM等分析。图2则为实际的基频发射模块测试系统。
图3 无线局域网络传送/接收的运作原理
图4 传送封包 (frame) 架构
原理
在 IEEE 802.11a 的规格中定义了如图3的无线局域网络传送/接收的工作原理,物理层(physical layer,PHY)采用正交频分复用 (OFDM Orthogonal Frequency Division Multiplexing)的技术,将不同频率载波中的大量信号合并成单一的信号,完成信号传送。在发射端 (Tx, Transmitter),每个信号封包(frame)传送之前先利用反快速傅利叶转换(IFFT)来调变传送的信号;接着再利用相位-振幅调变 (IQ modulation,I: in-phase,Q: quadrature) 分别将相位-振幅信号取出;最后用射频 (RF,Radio Frequency) 电路将信号从基频(base band) 上变频到 5G Hz的频带再传送出去。接收端 (Rx,Receiver)则是先将射频(RF,Radio Frequency)信号降频到基频,再分别解调变出 IQ 信号后,利用快速傅利叶转换(FFT)还原每一个传送的信号封包。
为了聚焦本文的主题—高速数据采集卡的应用实例,我们在WLAN电路与信号处理上做了几个简化:
(1) 跳过RF射频电路,直接采集基频的信号来分析。
(2) IQ 解调变电路是以两片ADI 的Evaluation board来实现。
(3) 时序同步与采样时钟同步等议题并不特别讨论。我们在单端的 IQ信号之后定义了一个简单的阈值,让接收端可以在解调子载波前找到符号边界(symbol boundary)。
(4) 并未实现细部的信号处理技巧(譬如data descrambler/convolutional encoder/data interleaving/normalize average power/windowing function...)
图5 系统量测结果,包括IQ 信号,BPSK,64-QAM,与EVM
通过我们实际完成的系统效果来看,上述的简化对本文的目的尚可接受。
此外,每一次传送的封包 (frame) 架构如图4,其中 802.11a/g 规范了同步码 (preamble) 部分,首先需要先发射10个重复的短训练序列(short training sequence,共8ms),后面跟着2个重复的长训练序列(long training sequence,总共也是8ms),两者都是以 BPSK 方式调变。后续的信号与数据部分(皆为4ms)则是以 OFDM/64-QAM 方式调变。数据的数目为任意,可以由程控。
测试方法
测试信号量测
测试系统的任务是对WLAN电路板的特定位置进行基频的信号测量(图1中的Testing Point),电路在 Guard Interval (GI) Addition 后分别接出两组测点I+, I-, Q+, Q-。这两组信号为 I 与 Q的差分信号,通过一组ADI的差分信号转单端(single end) 输出的电路,我们将I与Q的信号以单端、两个频道的方式输入 PXI-9820 Digitizer。PXI-9820 的采样速率设定为 60MS/s,分辨率为14-bit,触发模式设定为 middle trigger。
测试信号产生
发射端的基频信号封包是由ADLINK 自行开发的无线网卡信号控制程序产生。程序会不断重复的产生传送封包,每一个封包的 preamble符号串(symbol sequences,包括两个short 和两个 long symbols) 都是依照 802.11a 规范的训练符号 (training symbol)依序产生。数据的长度与内容为任意,封包与封包的时间间隔也是任意设定的。在本测试中,数据的长度设定在4096n 个period,时间间隔是任意设定。
基频信号分析
通过正确的触发模式设定,PXI-9820 可以精确地从每一个封包的起点开始数据采样,然后将整个封包的数据传送至 PXI-3800 控制器的内存中。通过 PXI-3800 强大的运算能力,所有数据会进行实时的演算,并将整个 preamble 与 DATA 的部分进行下列计算:(1)将个别的单端I,Q信号转变成一个复数信号(I+Qi,complex signal) (2)针对每个符号(symbol),舍弃前16点循环扩展(Cyclic Extension)的部份,进行后64点的FFT计算,总计有2个短训练序列与2个长训练序列的FFT计算,接着以BPSK解调变 (3)与步骤2相同,对后续的DATA 的部分进行FFT计算,接着进行64-QAM及星座图(constellation)计算 (4)计算信号的EVM,作为传输品质及系统设计的量化参考值。其中EVM 的定义为:
z为测试信号,R为理想信号,M为量测符号数,k为样本序号
测试结果
图5为ADLINK 自行开发的实时 I-Q 信号分析程序软件界面。最上方绿色的信号为I part,下方的红色的信号为Q part。仔细观察这些信号,最左方规律的部分为preamble (short与 long) 符号串,右方不规律部分为Data。左下方标示“I/Q Vector for PLCP preamble (BPSK)" 为preamble 经过BPSK 编码之后的结果。 右下方标示“I/Q Vector for Data (64-QAM)" 为Data 经过64-QAM 编码之后的星座图。中间标示 "24.237" 为这个frame 的 EVM 值。处理完这个封包之后,系统可以立即采集下一个封包信号进行处理。
结语
由本系统的开发过程和实际应用情况可以看出,只要选择规格适当的高速数据采集卡,搭配功能齐全的计算机,再加上一些研发人员开发的相关软硬件接口,其实就可以很快速的设计出一套价格低廉、功能实用、又可以轻易大量复制的WLAN模块检测设备。也许有些读者会觉得,要发展这些搭配的软硬件接口会有一些难度,并且会花费许多时间。但是我们的经验发现,有这种需求的产业,通常会有了解规格的研发人员,只要挑选到规格合适的数据采集卡,最关键的会是在撰写相关的信号处理程序上,这正是了解规格的研发人员的专长,所以通常是时间的问题,不是难度的问题。到底值不值得这样做呢?以本文为例,前端的转换电路,对稍具经验的硬件工程师来说应该不难。后端的实时 I-Q 信号分析程序,对网通业者来说应该是更简单。花不长的时间,却换来可能让生产成本大幅降低的机会。
这样的系统只要再加强物理层(PHY)无线数字信号处理算法的功能,就可以用来验证发射端物理层(Tx PHY)的系统设计性能,或是接收端相关信号处理算法的品质。如果再搭配矢量信号发生器(VSG, Vector Signal Generator) ,那就可以用来评估发射-接收端(Tx-Rx)的硬件设计性能,也可以提供给生产线用做产品基频性能的验证。当然若再加上上变频器(UP Converter) 与下变频器(DOWN Converter)的电路,那就几乎可以当作一部真正WLAN 相关产品的测试机了。
WLAN厂商(包括芯片设计,系统生产)目前面临着非常巨大的商机,但同时也必须背负着庞大的研发设计验证和生产测试的设备成本压力。 而放眼未来新一代的产品,譬如MIMO (Multiple Input, Multiple Output) for WLAN,Ultra Wide Band (UWB)等,虽然规格是WLAN的进阶或是原理类似,但是原有的测试设备却不见得可以使用在新产品上。到时是否又必须舍弃掉原有昂贵且数目众多的验证和生产测试设备,另外再花费巨资购置新一代的设备? 本文利用高速数据采集卡设计一套WLAN产品检测系统,除了可明显缩短开发周期外,并且具有成本低廉、功能可以弹性扩展、容易大量复制给研发人员及产品线使用和易于升级至下一代产品等优点。其实相同的概念也可以运用在 TFT-TV,、机顶盒、通讯产业等。关键在于:只要找到规格适当的数据采集卡,人人都可以制作出成本令人满意的检测系统。