当前位置:首页 > 通信技术 > 通信技术
[导读]提出了一种改善射频功率放大器非线性的新的预失真法。该方法没有前馈法复杂,也克服了反馈法增益下降的缺点。首先分析功率放大器的传输特性进行,并从幂级数的展开式中得到方便分析的结论;然后通过对方案中参数的分析,找到能够改善功率放大器非线性的办法;最后给出了计算机模拟实验结果。实验结果表明,用该方法改善功率放大器的非线性比较有效,可以使IMD3的功率电平至少下降34 dBm。

 随着通信技术的发展,特别是第三代通信系统的开发应用及蓝牙技术的研发涌现,要求射频(RF)或微波功率放大器(PA)有很好的线性特性,而用来表示线性特性的参数往往是三阶交调产物的功率电平。这是由于功率放大器是一种非线性器件,不管其工作在线性区(即弱非线性区)还是在非线性区(即强非线性区),都会产生非线性产物,只不过工作在线性区时,非线性产物功率电平较低,一般只考虑其三阶交调量即可;而当其工作在或接近1 dB增益压缩点时,其非线性产物功率电平就很高,此时,五阶交调量(IMD5)甚至七阶交调量(IMD7)都必须予以考虑。?
    对于应用在基站和手机中的射频功率放大器,在维持可接受的功率附加效率
(PAE)的条件下,采取有效的办法来减小其交调产物的功率电平往往是非常必要的。改善功率放大器非线性的常用方法有前馈法,反馈法和预失真法等。其中,反馈法是出现较早的一种方法,但由于反馈法采用了闭环反馈的结构,以至使功率放大器的增益下降而前馈法又过于复杂,若其各相消环均采用了下变频转换器还会使系统不稳定。本文所提出的方法,非但没有降低放大器的增益,而且由于其电路没有解调器或下变频转换器,故较笛卡儿反馈法和中频反馈法简单,易于调试。?
基本原理?
    以下分析均假定功率放大器工作在弱非线性区。我们假设功率放大器的非线性特性可以用下述无穷项的幂级数描述:
(1)
    其中vi(t)为功率放大器的输入信号,vo(t)是功率放大器的输出信号,如图1所示

    若输入为双频等幅信号,即:

    其中ω1≠ω2,那么,功率放大器的输出可以表示为:

    由式(3)和式(4)可以得到如下的结论:?
    ①式
(1)中的奇次方项产生了输出信号的奇阶谐波频率分量和交调频率分量,其中奇阶谐波频率分量被滤除;?
    ②偶次方项除了产生直流分量外,还产生了偶阶谐波频率分量,但均被滤除;

    ③较高奇次方项对较低阶交调频率分量均有贡献。?
    如果我们在放大器的输入信号中加入适当的失真信号(如三阶交调成分),使输入信号预先发生失真,即:

其中:,φ1φ22设计方案是三阶交调失真成分的幅度及相位。设计方案如图2所示,其中,输入的射频信号被分裂成两路:下通路信号被前馈到合成器(1),与反馈回来的信号(经延时和衰减)相加,然后经过移相和放大,最后出来的是信号的失真成分;另一路直接馈到合成器(2),与下通路馈来的失真成分相加。最后在功率放大器的输入端得到输入信号的失真成分。? 
    把式
(5)代入式(1),并令K=(为某一常数),则:

    显然,如果式(7)中的ρ,φ1和φ2选择得当,就可以使得三阶交调产物相互抵消,从而使得功率放大器最终输出的三阶交调量为零。同样地,如果我们采用五阶交调产物作为输入信号的预失真成分,适当调节其幅度和相位,也可以使得功率放大器最终输出的五阶交调量几乎为零。值得注意的是,在图2中并没有使用非线性器件作为预失真器,此外,产生预失真成分所使用的是三阶交调量,与文献使用的谐波成分是不同的。?
计算机仿真结果?
    用式(
1)对一工作在800 MHz的功率放大器的传输特性进行逼近,拟合出该功率放大器的传输特性,其相应的曲线如图3所示。?

    然后通过计算机仿真,得到功率放大器输出的功率谱。仿真结果表明,这种方法是比较有效的,降低三阶交调量(IMD3)超过34 dBm4和图5分别表示没有预失真改善措施时功率放大器的功率谱和采用预失真改善措施后功率放大器的功率谱。应注意到,通带外的谐波成分经滤波器滤波后几乎被完全虑除,故在分析时不作考虑。?
结论 ?
    理论分析和计算机模拟结果均表明,通过前馈和反馈得到输出信号的交调失真成分,正确调节其幅度和相位,并把他作为输入信号的预失真成分,经过功率放大器的非线性作用后,确实可以改善交调量的性能。该方法可以和文献一样降低IMD3超过34 dBm。此外,该方法使用的并不是直接的反馈法,而是通过反馈和前馈得到信号的失真成分,所以保证了增益不下降,这由仿真图也可以得到证明。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭