当前位置:首页 > 通信技术 > 通信技术
[导读]1、问题的描述和分析 目前通信网中的各种设备之间的时间误差非常大。通信网的计费,运营管理,事件记录和故障判别需要统一的时间标准。 现代通信网设备日益采用计算机平台,日益IP化。采用软交换技术,时间同

1、问题的描述和分析

目前通信网中的各种设备之间的时间误差非常大。通信网的计费,运营管理,事件记录和故障判别需要统一的时间标准。

现代通信网设备日益采用计算机平台,日益IP化。采用软交换技术,时间同步采用TCP/IP时间协议NTP协议成为趋势。

通信网内获得时间同步,要按照不同精度要求和稳定要求选择时间源,选择合适的时间传输技术和校准方法。

2、时间源的选择

现代标准时间源是原子钟。原子钟是原子频率的简称,是根据原子物理学和量子力学原理制造的高准确度和高稳定度的振荡器。物理原理是原子跃迁频率只取决于其内部特征而与外界电磁场无关,可以利用量子跃迁实现频率控制。

因为原子钟振荡频率存在着系统的和随机误差,人们通常采用一组原子钟,用统计方法构成一个“平均原子钟”,取得原子时。现在国际原子时由50多个原子钟计算得到。

按照广义相对论四维时空框架,世界各国的原子钟按照规定的方法进行相互比对,其数据再由专门的国际机构进行处理,求出全世界统一的国际原子时(IAT)。UTC(Coordinated Universal Time协调世界时)是一个复合的时间标度,由原子钟驱动的时间标度和地球旋转速率为基准的时间标度组成。UTC时间可由国内计量标准机构和全球导航卫星得到。

铯原子钟有很高的准确度,稳定度和均匀度,准确度达到±3×10-15,长期稳定度±2×10-15,因此成为现代最高标准时间源,铷原子钟稳定性不够,但是成本低,GPS可校正铷原子钟,二者配合使用。

我国电信系统采用的时间源有两种,一个是国内的原子时间源,在武汉和北京的铯原子钟,一个是GPS。全球定位系统GPS是美国卫星导航系统, GPS发送美国海军天文台的UTC(USTU),为全世界用户提供时间服务,美国海军天文台的UTC由20多个铯原子钟形成,这种时间源完全能够达到电信网内各种设备时间同步的精度要求。GPS时钟与地面钟不同,要考虑狭义相对论中的卫星和接收机相对于地心惯性坐标系移动的校正,和广义相对论中卫星和接收机引力周期变化的校正,以使用户更准确的得到时间。

3、授时技术的选择

授时服务为国家计量机构提供,为用户提供3种信息:日期和时刻,精密的时间间隔,标准频率。在我国可以主要得到下面授时信号。

(1)地面无线电波授时:国内有BPM短波授时和BPL长波授时。都有精度高,覆盖大的优点,如图1所示。

 



图1 地面无线电波授时

(2)卫星授时

GPS导航系统:提供的时间信号对世界协调时跟踪,精度优于100 ns。GPS全球覆盖,接收设备体积小,可以接收6颗卫星信号,可用来提供2.048 Mbit/s基准时间信号。

俄罗斯的GLONASS卫星导航系统:目前系统未完成完善,接收设备商业化不够。

中国的北斗导航系统:精度达到50 ns,目前覆盖中国,同步卫星信号接收设备体积较大,系统还未建成。

(3)网络授时:通过互联网授时。使用NTP(Network Time Protocol,网络时间协议,RFC1305)。

(4)电话授时:通过公共电话网,用户用调制解调器接首时间信号。

(5)电视授时:通过电视网授时。

(6)电信有线传输网授时

表1是授时精度比较

表1 授时精度比较



从表1比较看出,无论是精度,还是覆盖范围来看,以卫星授时最佳,采用美国GPS系统较佳。GPS得到比较好的维护,可靠,终端商业化。在通信网中GPS要与各级原子钟主备用。

4、NTP协议的网络时间同步

随着通信网日益IP化,通过IP网络,使用NTP(Network Time Protocol,网络时间协议,RFC1305)修正通信系统内部时间。

NTP采用客户机/服务器模型,NTP服务器端口等待发送到此端口的UDP报文,响应其他设备作为客户机向NTP服务器发送请求,发送32位整数表示的当前时间报文、计算精确度和稳定度的信息,客户端接受信息后调整本地时间。

RFC1305属于TCP/IP协议族,这种协议传送时间的要点是取得传送的时间延迟并进行延迟补偿,协议的传输延时与时间偏差计算方式是一种实时的动态机制,采用Filtering和Selection算法,包括Clock-Filter算法,interval-intersection算法,clustering算法。客户端可以和几个时间服务器对时,用算法过滤来自不同服务器的时间,选择最佳的路径和来源来校正时间。每一个时间报文内包含最近一次的事件的时间信息、包括上次事件的发送与接收时间、传递现在事件的当地时间、及此包的接收时间。在收到上述报文后即可计算出时间的偏差量与传递报文的时间延迟。仅从一个时间服务器获得校时信息,不能校正通讯过程所造成的时间偏差,而同时与许多时间服务器通信校时,就可利用算法找出相对较可靠的时间来源,然后采用它的时间来校时。时间服务器用算法将先前8个校时报文计算出时间参考值,以时间参考值判断后续校时包的精确性,如果后续有相对较高的离散程度,表示这个对时报文的可信度比较低。

时间服务器可以利用以下3类工作方式:

symmetric:时间服务器可以从远端时间服务器获取时钟,也可提供时间信息给远端的时间服务器。此一方式适用于配置多个时间服务器,可以提供更高的时间精确度给客户。

Client/server:局域网的环境,时间服务器接收上级时间服务器的时间信息,并提供时间信息给下层的用户。

broadcast:局域网的环境,时间服务器以广播的方式周期性地将时间信息传送给其他时间服务器,其时间仅会有少许的延迟,配置简单,精确度并不高。

最高时间服务器要以高精度时钟参考,一般是GPS信号。国际互联网的NTP时标以UTC时标为基础,以1972年1月1日0时起,这个时间 NTP计为2272060800s(以1900年1月1日0时为起点),例如UTC时间的1990年12月 31日23:59:59,NTP时标为 2871590399s。如果构建用户自己的NTP授时网,可以自己选择起点,中国科学院国家授时中心以1999年12月31日起。

RFC1305规定系统配置一套最高15层服务器的系统,每层时间服务器的精度以Stratum定义,Stratum1时钟精度大约比授时信号差10倍,按照系统和设备时间精度需求,选择级别和传输技术。

TCP/IP协议族另有Daytime协议(RFC867)、Time协议(RFC868)与NTP配合。SNTP协议(RFC2030)是NTP的简化版本,没有NTP复杂的算法,一般在windows上的实现,如图2所示。



图2 NTP结构图

安全机制:使用了验证(Authentication)机制,检查来对时的信息是否是真正来自所宣称的服务器并检查报文的返回路径,以对抗攻击,但是加密算法要求计算机性能比较高,并影响时间精确度。

5、通信网内采用NTP网络授时的组网方案

电信网中可以采用精度较高的有线传输方式(SDH,DCN、DDN等)来传播时间信息。运营商的DCN是省内互联电信运营管理系统的TCP/IP专用网络,比较方便在其上建立时间同步网。

采用NTP网络授时,参照中国科学院国家授时中心建的网络授时系统数据,广域网定时精度300 ms,局域网<15 ms级。一个省电信网有8~10个本地网有Stratum 1服务器,其他地市用Stratum 2级时间服务器。本地网级的Stratum 1时间服务器之间互相联网,以symmetric方式互相校时,避免GPS时间源出故障造成中断,还可以达到更高精度。Stratum 1时间服务器对下级采用client/server方式。

Stratum 1时间服务器取得GPS时间信号和其他授时方式时间信号,比如其他导航卫星,短波,长波方式,互为备用。上下级Stratum采用DCN相连或专线相连,保持稳定相连。各级时间服务器把时间信号发到各个通信设备,如图3所示。



图3 省内电信时间同步

参考商用产品测试指标,Stratum 1授时精度达到1~10 ms,估计Stratum 2访问Stratum 1达到10-100 ms,Stratum 3达到100 ms-1 s,整个时间网络分2-3级,达到100 ms级,满足电信网秒级精度要求。

如果要求更高时间精度,例如信令分析,在电信网中用DDN专线传输时间信号,精度达到1~10 ms。

6、时间服务器选择

Stratum 1时间精度决定于时间源和硬件接口,如果采用原子钟和高速接口可以达到10 ms内。Stratum 1时间服务器要在计算机上直接插入PCI总线定时板卡用于接收和维持时间信息,就可以直接连接并同步到标准时间源上——例如GPS或短波接收机,它们可以独立维持时间而不受主机操作的影响;板卡上的晶体振荡器有足够的精确度。精度要求较高的,例如信令分析,采用GPS与较便宜的铷原子钟配合。 WINDOWS 2000或UNIX系统作为时间服务器。根据客户端数量,校准频率和加密处理来选择服务器性能配置。

7、通信设备内部时间源

通信设备也要采取措施提高时间源精度和稳定度。选择合适振荡器级别。

表2 振荡Stratum级别



Stratum 1:国家级时钟源,GPS时间

Stratum 2:长途交换和长途传输系统

Stratum 3:本地交换和本地传输系统

Stratum 4:用户交换机

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭