当前位置:首页 > 通信技术 > 通信技术
[导读]现阶段,各种系统外和系统内的干扰对TD-SCDMA网络性能造成了较为严重的影响,因此,干扰的优化成为了TD-SCDMA无线网络优化工作中的一个重要环节。首先对TD-SCDMA系统中存在的各种干扰类型及其常见问题进行分类与定位,接着结合工程实践经验,给出了TD-SCDMA网络干扰问题的优化流程,最后通过具体的优化案例对TD-SCDMA网络的干扰优化做了进一步的分析。

引言
    由于码分多址(CDMA)系统是一种自干扰系统,干扰是影响CDMA系统性能的一个重要因素。在TD-SCDMA网络优化中通过对各种数据的统计分析后发现,干扰不仅会影响TD-SCDMA的通话质量,还会进一步影响到呼叫成功率,掉话率以及切换成功率等网络性能指标。同时,随着现代化城市建设步伐的加快,各种无线系统的建设和应用,干扰的来源和种类也呈现出多样化的趋势。通常,将网络上存在的影响通信系统正常工作信号、非通信系统需要的信号,以及出现在接收带内的非系统内部信号认为是干扰。本文主要针对TD-SCDMA系统中出现的几种常见干扰进行了分类和定位,并针对干扰给出了TD-SCDMA的优化方案和流程,并通过具体的案例对其进行了验证。

1 TD-SCDMA网络中干扰的分类与定位
    作者在TD-SCDMA无线网络优化工作中发现,由干扰引起的系统问题主要有掉话、未接通和切换失败等,各种情况所占比例情况如图1所示。


    总体来看,TD-SCDMA系统中的干扰主要包括系统内的干扰和系统外的干扰,其中,系统外干扰目前主要来源于占用TD-SCDMA系统频带或接近TD-SCD-MA系统频带的各种系统,系统内的干扰主要表现为同频干扰。现阶段,系统外的干扰大致可以分为三类:一是,小灵通PHS系统下行信号对TD-SCDMA系统上行信号所造成的干扰;二是,有一些电信运营企业在未得到允许的情况下在TD-SCDMA频段上发射信号对TD-SCDMA系统所造成的干扰;三是,部分大功率源产生的大功率信号谐波影响到TD-SCDMA的信号发射器,从而造成对TD-SCDMA系统的干扰。系统内干扰目前主要是由同频同码组的基站覆盖重叠所引起。此外,由于基站GPS故障等原因所引起的失步会导致部分下行信号落入上行信号时隙,从而造成对TD-SCDMA系统的干扰,因而,GPS失步也是TD-SCDMA系统内干扰的来源之一。
    通过上述分析可以看出,TD-SCDMA系统中干扰可以分为系统内和系统外两类干扰,从另一个角度来看也可以分为上行干扰和下行干扰,其中,上行干扰主要来自于系统外部,而下行干扰主要是来自于系统内部。目前,TD-SCDMA系统的下行干扰主要是通过PCCPCH C/I(Primary Common Control Physical Channel C/I,主公共控制信道载干比)来衡量,实际优化工作中如果PCCPCH C/I值大于-3 dBm则认为系统存在干扰。上行干扰主要是通过ISCP(Interferenceon Signal Code Power,干扰信号码功率)值来衡量,在实际TD-SCDMA优化工作中,干扰的认定是以ISCP值大于-85 dBm为标准。
    结合上述干扰源的分析和干扰的主要衡量指标,可以对各种干扰源做如下定位:
    (1)由于TD-SCDMA是一个TDD系统,目前国内的TDD系统有TD-SCDMA和小灵通两种,为此,当提取各基站ISCP值进行分析时,若发现各时隙ISCP值有明显差异且随时间变化较为明显,此时受小灵通干扰的可能性较大。为了正确定位是否是由于小灵通系统造成的干扰,可以通过关闭小灵通基站的方式来确定,若关掉小灵通基站后,ISCP有明显的降低,则可基本确定该干扰为小灵通干扰;反之,则可以排除此干扰。
    (2)同频同码组小区的干扰是TD-SCDMA系统的另一个主要干扰来源,通常,可以通过以下方法来确定是否有同频同码组小区的干扰:关闭其中一个小区或者降低其中一个小区的下行发射功率,如果实施上述操作后干扰明显减小,则可基本确定该干扰由同频同码组造成;反之,则可以排除此干扰为同频同码组干扰。
    (3)在一些特殊区域,如军队、监狱等相关区域,存在干扰源的可能性比较大,针对此类干扰,可以通过定向天线多点交叉方法对其进行定位,并可以通过对受干扰扇区进行方向角和下倾角的调整来定位具体的干扰方向。

2 TD-SCDMA干扰问题的优化流程
    对于上述干扰所引起的各种问题(如掉话、切换失败等),可以通过如图2所示的流程进行优化,最终使问题得到解决。


    从图2中可以看出,首先,通过用户投诉、DT(Dail Test)和CQT(Call Quality Test)测试等途径来发现问题,并对发现的问题进行分类(如未接通、掉话、切换失败等)。发现问题以后,首先应检查对应RNC、基站、小区的板卡状态是否正常、是否有告警,确定该问题是否由硬件故障所导致,如果是硬件故障,应及时更换硬件板卡。如果不是硬件的问题,接下来,再通过查看RNC每日的KPI(Key Performance Indi-cators)性能统计指标,察看RRC的建立成功率、RAB指配成功率以及切换成功率等指标是否有异常,以便后期的问题定位。
    根据上述分析,在TD-SCDMA系统中,干扰主要是通过基站ISCP值、PCCPCH C/I值以及手机发射功率的大小等参数来判断,所以在发现问题时,首先应查看这3个值的大小,分析其是否异常。若有以上参数有异常,则可以基本确定问题是由干扰所引起。反之,则可以排除干扰的因素。如果确定某问题是由干扰所致,则可以通过以下方案进行对干扰源进行定位,制定出相应的优化方案。
    (1)排查GPS硬件故障。如前所述,GPS失步是TD-SCDMA系统内干扰的主要来源之一,为此,应首先排除由GPS硬件故障所带来的失步问题。GPS硬件由于跑偏而引起失步将会导致下行信号对上行信号的干扰,此类干扰范围大、强度高,通常仅干扰1~2个上行时隙,且干扰电平以跑偏基站为中心向周边逐步递减。对于此类干扰,解决方法主要是通过升级跑偏基站的GPS软件和硬件或者直接更换GPS板卡来完成。
    (2)查看ISCP值。若各时隙最大ISCP值随业务量的变化而变化,且值大于-85 dBm,则可初步判定为上行链路干扰。此时,应通过核查算法和参数设置,检查邻区中的同频同码小区以及调整上行物理信道配置时隙等方法来避开干扰。
    (3)查看PCCPCH C/I值。若其小于-3 dBm,则可认为存在下行干扰,此时,应首先查看周围是否存在同频同码组的小区,如果存在则需要通过修改频点和扰码来消除此干扰;若短期内不能及时修改频点和扰码,也可以通过以下方法来解决:第一,降低离干扰点较远的一个邻区的下行功率或者调整该小区天线的下倾角来消除越区覆盖,从而达到减小干扰的效果;第二,调整主服务小区的切换参数(例如个性偏移参数),加快UE切换到下一个目标小区,尽快离开干扰频点小区,从而达到避开干扰的目的。
    通过上述方案的实施,若还不能解决,则还要结合现场测试和信令跟踪做进一步的分析和处理。结合信令跟踪的分析与处理一般步骤为:对于某一问题点,先查看该问题点所在小区的CELL ID和测试用UE的IMSI号,在现场DT/CQT测试的同时通知机房进行信令跟踪,抓取相关的接口信令(UU接口、Iu接口),当问题再次出现(复现)后,提取CDL信令并将其与正常信令流程进行对比,定位出该问题具体属于网络的那个部分(核心网、RNC、NodeB),最后制定出针对性的解决方案。

3 TD-SCDMA干扰问题优化案例分析
3.1 案例1:干扰引起掉话的优化案例

    在某次现场测试中发现,测试车辆由北向南行驶经过远通大厦的过程中,UE接收到的PCCPCH RSCP(接收信号码功率)逐渐降低,接着UE切换到美术公司TD-3小区(即图3中频点为10088,Cell ID为43的位置,图中绿线表示UE所连接的TD-3为UE此时的主服务小区),此后UE一直挂在美术公司。TD-3小区上,直至UE在远通大厦附近(图中红色UE所在区域)出现掉话现象。


    从服务小区测量表中可以看到,掉话点处干扰较大区域(PCCPCH C/I=-13 dBm),通过查看该路段附近各个小区的频点信息,得知省京剧团TD-2小区(频点为10088,扰码为85)与美术公司TD-3小区(频点为10088,扰码为43)的频点相同,对远通大厦形成较为严重的同频干扰,从而导致掉话。
    在本次优化中,采用了调整主服务小区的切换参数,让UE尽快离开干扰频点小区的方式加以解决。即调整了美术公司TD-3的个性偏移参数,由O dBm调整为5 dBm,使得UE向下一目标小区远通大厦TD-2的切换速度加快,让UE尽早脱离了10088这个频点。通过上述优化调整,得到的复测效果如图4所示,通过图4可以看出,经过优化后UE在同一位置处的主服务小区已经切换成了远通大厦TD2小区,脱离了10088这个频点,此时,RSCP值明显提高(从-77 dBm上升到-65 dBm),抗干扰能力明显增强,从而消除了前面的掉话现象。


3.2 案例2:干扰引起未接通的优化案例
    在某次现场测试中,某处DT测试时出现未接通情况,通过查看KPI性能统计发现该小区的RB建立成功率偏低,通过提取当日CDL发现RB建立失败原因均为超时(Timeout),进一步查看ISCP值发现,时隙1以及时隙2的最大ISCP值和平均ISCP值都偏高,均在-70 dBm左右,根据前面分析判断可能是上行链路干扰所引起的问题。
    通过检查PRACH物理信道,发现其位于时隙1,为此,调整了PRACH物理信道的时隙位置,从时隙1调整到时隙3,以此来避开上行链路干扰。经优化修改之后,该小区的RB建立成功率明显提高,使得未接通问题得到了解决。如图5所示。



4 结语
   
通过对TD-SCDMA无线网络中干扰及其问题的定位看出,TD-SCDMA系统中干扰可以分为系统内和系统外两类干扰,其中,系统外干扰主要来源于小灵通PHS系统、部分未得到允许的TD-SCDMA频段上发射信号,以及部分大功率源产生的大功率信号谐波等。对这些干扰的定位主要借鉴于PCCPCH C/I,ISCP以及手机发射功率等参数。在TD-SCDMA干扰问题优化过程中,应首先排除GPS等硬件故障,然后再分别查看ISCP和PC-CPCH C/I值,根据各参数的大小对干扰问题的真正原因进行初步判断,部分干扰问题还要结合复测和信令跟踪来进一步分析。由于TD-SCDMA网络由于干扰引起的问题较多且随机性比较大,本文所给出的分析方案以及案例只是实际网络优化中发现的一小部分问题,在实际工作中,需要根据问题的实际特征进行具体分析,找到问题的根本原因,制定出更为有效的解决方案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭