窄带CDMA无线网络的规划和设计
扫描二维码
随时随地手机看文章
1、引言
近10年来,移动通信用户以每年递增80%~200%的速度扩大规模。据此分析,到2000年,中国的移动用户将达到3 000万户,占世界移动用户总数的10%左右。迅速增长的网络容量,与有限的频率资源之间的矛盾,越来越突出地显现出来。
而CDMA技术具有用户容量大、覆盖范围广、话音质量好等特点,从而赢得了广大消费者及运营商的青睐,在世界各地也得到了越来越广泛的应用。截至1999年6月,全球CDMA网络移动用户已超过3 000万户。1996年,我国首先在北京、上海、广州和西安四城市进行了CDMA网的商用试验。根据试验效果以及市场需求,目前有可能建设大规模的商用网。
2、无线网络规划
移动通信网的工程建设大致可分为6个步骤:拟定网络需达到的覆盖指标和话务要求;初步网络规划;基站站址现场勘察;修正网络规划,完成工程设计;系统调测和网络优化;根据优化结果或网络扩容要求,返回第一步。CDMA网络的设计同样遵循这个步骤,但在很多方面又区别于GSM和TACS网。
2.1 无线覆盖
CDMA网络的无线覆盖主要取决于设备噪声系数、干扰影响、衰落储备、Eb/No等因数,其具体分析见表1。
表1 无线覆盖参数的设定
序号 |
项目内容 |
典型值 |
备注 |
1 |
带宽(HZ) |
1228800 |
CDMA单载频带宽 |
2 |
Blotzman常数(w/(Hz*k)) |
1.38E-23 |
有单位常量 |
3 |
温室(k) |
290 |
|
4 |
基站噪声系数(dB) |
5 |
典型值 |
5 |
接收机干扰影响(dB) |
4~6 |
|
6 |
软切换增益(dB) |
3~4 |
|
7 |
基站天线曾益(dBi) |
9~17 |
|
8 |
馈线损耗(dB) |
1~3 |
|
9 |
正态衰落储备(dB) |
9~11 |
|
10 |
建筑物穿透损耗(dB) |
10~25 |
根据地形地物取值 |
11 |
Eb/N。(dB) |
6~7 |
|
12 |
所需C/I(dB) |
-14 |
|
其中带宽和Boltzman常数为固定值,基站噪声系数根据设备而定,干扰影响由网络设计负载百分比取定,衰落储备由无线信号边缘覆盖率给出,Eb/No根据话音质量与FER的相应关系综合取定。
由于CDMA为宽带系统,有较高的扩频增益,故当C/I为负值时仍能得到好的服务质量,这一点大大优于传统的GSM和模拟系统。在同等条件下,CDMA比GSM传播距离要大1.3~2.1倍左右。对于大城市高话务密度区CDMA基站半径最小可设置在300 m左右;对于郊区开阔地,应充分发挥其覆盖范围大的特点,半径可达50 km以上。表2给出了几种不同地区的基站覆盖半径。
表2 各类地区的基站覆盖半径
区域 |
城市密集区 |
城区 |
郊区 |
乡村 |
车辆 |
建筑物穿透损耗 |
18~25 |
15~20 |
10~15 |
10 |
6 |
CDMA基站半径(km) |
0.9 |
1.5 |
4.3 |
21.0 |
33.0 |
2.2 基站话务配置
(1) 基站容量的确定
确定CDMA基站容量的主要参数有:处理增益、Eb/No、话音激活因子、频率复用系数,以及基站天线扇区数等。
对于单扇区单载频的基站最大配置可为61个信道,目前工程上一般取值为全向23个,定向20个,见表3。
表3 典型站型容量配置表
|
GOS=2% |
GOS=5% |
|||||
站型 |
信道数
(个) |
话务量
(个) |
用户数
(个) |
信道数
(个) |
话务量
(Erl) |
用户数
(个) |
|
O1 |
23 |
15.76 |
631 |
23 |
18.08 |
724 |
|
O2 |
46 |
36.53 |
1462 |
46 |
40.55 |
1622 |
|
|
20/20/20 |
39.54 |
1582 |
20/20/20 |
45.75 |
1830 |
|
|
40/40/40 |
93.00 |
3720 |
40/40/40 |
103.8 |
4152 |
|
由于CDMA基站扇区间的物理信道资源可以共享,所以在网络实际运行中,它所能处理的话务量,还要大于设计理论值,这是其它制式不具备的独特优点。
(2) 话务配置
与GSM网相比,CDMA网基站的话务配置具有更大的灵活性,因此,它也是工程建设中的重点。首先,需对实地进行详细查勘,了解当地移动话务分布状况;其次要利用先进的网络规划软件预测;最后根据预测结果,分配基站话务量。最终设计值与网络开通后的实际话务量差值应不超过30%。
2.3 干扰分析与协调
IS-95指定CDMA网所用频段为:上行824~849 MHz、下行869~894 MHz。我国目前已建成的ETACS网使用的频率正好为880~890 MHz,故未来建设的CDMA网必然会对现有网络产生很大的影响。这类干扰的存在是我国独有的现象,在世界其他国家和地区,或因为没有采用ETACS制式,或因为没有使用CDMA技术,因而不存在此类现象。它的解决也是影响到CDMA网络建设的关键问题之一。
CDMA发端信号对ETACS收端的影响可用下式表示:
Pr=Pt-LoA-Lb-10 lg(30 /25)
其中,Pt:CDMA单扇区输出的最大功率;Pr:ETACS接收的信号强度;LoA:CDMA带外损耗;Lb:CDMA、ETACS天线隔离度。
为保证不产生干扰,要求Pr 值小于ETACS接收机灵敏度,即调整天线隔离度,理论计算需达到86 dB以上。天线隔离度有水平、垂直和倾斜之分:
水平隔离度Lh=22+20lg10(d/λ)-(Gtx+Grx)
垂直隔离度Lv=28.0+40lg10(d/λ)
倾斜隔离度Ls=(Lv-Lh )(θ/90)+Lh
其中,d:天线水平间距(米);Gtx、Grx:天线增益;θ:两天线在垂直面内的夹角。
要满足隔离要求,CDMA与ETACS天线垂直间距应大于6 m或水平间距保持在1 km以上。但实际传播环境并非自由空间,由地形、地物和建筑物等引起的绕射损耗是理论无法计算的。要分析这些情况,还需要到现场对无线信号场强进行测试。
在空间去耦的同时,还可以调整天线相对位置、使用干扰抵消器、采用波瓣较窄的天线等方法,来加大隔离度。但这些都不能保证从根本上解决干扰问题,最好的办法是实行频率协调,重新划分这段频率,并给予一定的保护带宽。
2.4 PN-Offset的规划
由于CDMA系统频率复用系数约为1,所以它不需要进行频率规划。但是在实际情况中会有一个潜在的问题,那就是:尽管所有的基站都使用不同的PN-Offset,然而在移动台端看来,由于传播时延(邻PN-Phase干扰)和PN-Offset复用距离不够(同PN-Phase干扰),就会使一些非相关的导频信号看起来一样。邻PN-Offset干扰是影响大覆盖区基站的主要因素,同PN-Offset干扰是影响小覆盖区基站的主要因素。因此PN-Offset的规划是CDMA系统特有的问题。
所有具有相同频率但不同PN码相位的导频集有四种:有效导频集、相邻导频集、侯选导频集和剩余导频集,PN-Offset干扰只会发生在前两种导频集中。
(1) 如果两个相位上非相关的信道都落在同一有效导频搜索窗口中,两者都会成为三个最强信号中的一个,有效导频集PN-Offset干扰就会发生。移动台就会解扩并合并非相关的前向业务信道信号。
(2) 如果一个远端业务信道落入相邻导频集,且它的Ec/Io>T-add,相邻导频集PN-Offset干扰就会发生。移动台就会切换到错误的导频上,并解扩错误的信号。
它们的共同结果是强干扰和掉话。
避免邻PN-Offset干扰的方法是:
.使邻PN-Offset间的间隔比传播时延造成的不同要大得多。
最小要求的间隔值 S[chip]≥R×[1021/10a -1]+W/2
其中,R为小区半径,单位为chip(1 chip=244 m);W为有效导频窗口尺寸,单位为chip; a为路径损耗指数。
.大的小区需要大的间隔,即增大相邻小区PN码的相位偏差。
避免同PN-Offset干扰的方法是:
.使传播时延造成的不同大于导频搜索窗尺寸W的一半;
.PN复用距离的最小值D应满足:D>W/2+2R。
2.5 软切换区的设置
CDMA系统有硬切换、软切换和更软切换三种切换方式。硬切换只存在于不同载频之间。所谓软切换是指移动台在切换过程中,在与新的基站建立联系时,并不立即中断与原有基站之间的通信,即“先接再断”。目前,工作在同一载频时,CDMA可实现BTS之间、BSC之间和MSC之间的软切换。同一基站不同扇区之间的切换称之为更软切换。
在软切换过程中,移动台与不同基站建立联系,始终保持不变的是最初建立呼叫所选用的声码器。因此,若声码器置于BSC内,则在不同BSC之间需设置中继直达电路,把声码器连接起来;若置于MSC内,也需同样处理。但由于MSC控制范围大,内部声码器数目多,故设置直连电路耗费较大。一般采用ATM方式连接不同MSC,来实现它们之间的软切换。从这点上讲,BSC和MSC综合设置可节省传输投资。
另一个重要方面就是软切换区的设置。软切换技术的引入确实降低了切换掉话率,提高了通信质量。但为了实现软切换,在基站配置时需专门拿出一些信道卡,来作为软切换信道。因此,软切换信道配置过多,势必造成资源浪费;过少则降低软切换成功率。应结合各地的实际特点,以及CDMA网络的建设和发展规模,合理地设置软切换区比例。工程上一般使之保持在30%~40%之间。
2.6 多载波的应用
近年来由于移动用户成倍增长,在一些大城市高话务地区,话务密度由原来的每平方公里几个、十几个尔朗,发展到几十个、上百个。未来二三年内将会更高。CDMA多载波技术的应用是解决这么高的话务密度的重要方法。
因为CDMA系统中多载波之间为硬切换,所以在多载波的设计中首先要考虑的因素就是如何减少硬切换。应注意以下问题:
(1) 要优化硬切换以减少发生掉话的危险;
(2) 避免多载波基站孤立,应在一群小区中实施多载波以减少硬切换;
(3) 避免使高话务小区成为硬切换发生的边界小区。
网络规划时,应尽量使多载波基站连片存在。在切换上,可采用伪导频方法,即在多载波覆盖区域边缘,设置一些对多载波只发射导频信号的基站。当移动台移至此处时,利用此导频触发软切换,但采用其它载频的业务信道,然后再将导频信号切换到该载频上,实际完成硬切换。处理多载波之间的硬切换还有环路触发和判别FER等方法,可根据工程具体特点,灵活运用。
2.7 直放站的应用
移动通信直放站作为一种实现无线覆盖的辅助技术手段,常用来解决基站难以覆盖的盲区或将基站信号进行延伸。在网络建设初期,它可以利用较少的投资,较短的周期,来迅速扩大无线覆盖范围。它的设置应充分考虑以下几个环节:主要解决诸如郊县主要交通公路、铁路等狭长地形的覆盖;对于基站载频利用率不高的区域,可以通过直放站将富余的通信能力转给需要的地方,提高设备利用率;尽量设在相对隔离区域,以免产生无线干扰;选择合适的基站作为信号源。
在使用CDMA直放站时的注意事项有:
(1) 时延问题:直放站与信号源基站之间存在着4 ms时延,因此在设计其覆盖范围时,要同时考虑多径引起的时延和固有时延,使之不超过一个码片时间长度,才不会引起码间串扰。
(2) 天线设置:直放站的引入会引起基站的背景噪声增加,噪声的增加量与直放站的噪声系数、系统增益、天线增益和传播损耗等参数有关。我们在考虑其覆盖环境,使之具有一定的传播损耗的同时,也需慎重选择天线增益,从而使直放站的引入不会导致基站的通信质量下降。
(3) 分集技术:对于多径信号较多、移动用户移动速度较快的地区,若采用直放站技术,则必须考虑使用分集天线系统,才能保证通话质量,如高速公路地区;对于多径信号较少、移动用户移动速度较慢的地区,可以不必采用分集系统,如室内分布系统。
2.8 其他问题
在移动通信网络设计中,高话务热点地区是设计的难点和重点。CDMA网在进一步缩小宏蜂窝基站半径(已达到300 m)和采用多载波技术的同时,也可以使用微蜂窝、更多扇区和智能天线技术。由于CDMA系统共享同一载频,所以对于微蜂窝的应用,干扰控制是首要问题,可以利用建筑物来解决干扰,CDMA微蜂窝基站宜设在室内、地下、隧道或地铁等场所。
当三扇区不能满足容量要求时,若采用六扇区技术,可提高基站容量1.8倍。智能天线的引入,也可扩大网络容量1.3倍左右,同时也减少了无线信号干扰。
3、结束语
CDMA技术在我国的大规模商用,还处于初级阶段,许多问题的研究与解决,还需要我们在实践中不断地学习和检验。对于工程技术人员,进一步地了解和掌握其工程特点,是提高CDMA技术和扩大其市场的重要前提。