当前位置:首页 > 通信技术 > 通信技术
[导读]引言  射频识别(RFID)是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无需人工干预,可工作于各种恶劣环境下。RFID技术可识别高速运动物体并可同时识别多个标签, 操作快

引言

  射频识别(RFID)是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无需人工干预,可工作于各种恶劣环境下。RFID技术可识别高速运动物体并可同时识别多个标签, 操作快捷方便。非接触IC卡是目前RFID系统中最常用的一种电子标签,它诞生于20世纪90年代初,是世界上最近几年发展起来的一项新技术,它成功地将射频识技术和IC卡技术结合起来,解决了无源和免接触这一难题,是电子器件领域的一大突破。由于存在着磁卡和接触式IC卡不可比拟的优点,使之一经问世,便立即引起广泛的关注,并以惊人的速度得到推广应用,如我国的第二代公民身份证、公交卡、ETC免停车付费卡等。可以说RFID技术越来越多地应用到我国身份安检、质量安检、车辆安检、执法安检等诸多安检系统中。由于安检系统中往往涉及大量重要数据的读取、通信以及实时更新,因此数据库技术的引入必不可少。在操作系统上,本文选择了Linux操作系统,相比Windows,Linux更安全、更可靠,与其他操作系统相比有着许多独特的优势,更加适合用作嵌入式操作系统。

  1 系统结构介绍

  RFID安检系统主要包括RFID前段读写器、嵌入式Linux终端两大部分。

  其中嵌入式终端的CPU采用ARM9内核,内核执行速率达几百兆赫兹,可以很好地满足RFID数据的读取和存储。由于嵌入式系统一般是一个经过裁剪、资源极其有限的系统,因此对于安检系统中涉及到的大量数据只能存取到外围存储设备中,本方案中的SD卡模块正是用来存储数据库的,当RFID读写器读取到指定数据,便在SD卡中的相关数据库文件中查询,并根据查询结果做出相关反应并及时更新本地数据库。

  2 Linux下串口的开发

  在Linux下对串口进行配置、打开、读写等一系列的操作其使用方式与文件操作一样,区别在于串口是一个终端设备[1]。Linux中的串口设备文件存放于/dev目录下,其中串口1、串口2一般对应设备名依次为“/dev/ttyS0”、“/dev/ttyS1”。在使用串口之前必须设置相关配置,包括波特率、数据位、校验位、停止位等。

  串口设置由下面结构体实现:

  按照串口配置流程,对termios结构体设置相关参数,当串口按自己的设置要求配置成功后,即可将串口当做普通I/O文件,使用read和write函数对串口进行读取。

  3 sqlite3数据库的应用开发

  sqlite3数据库是一种嵌入式数据库,其目标是尽量简单,因此抛弃了传统企业级数据库的种种复杂特性,只实现对于数据库而言必备的功能。尽管简单性是sqlite3追求的首要目标,但是其功能和性能都非常出色,具有支持SQL92标准、所有数据存放到单独的文件中支持的最大文件可达2 TB、数据库可以在不同字节的机器之间共享、体积小、系统开销小、检索效率高、支持多种计算机语言、源码开放,并且可以用于任何合法用途等特性。

  3.1 sqlite3数据库的移植

  sqlite3数据库的移植过程如下所述:

  (1)首先从sqlite官网上下载最新的sqlite3源码包;

  (2)解压源码包,并进入解压目录:

  tar -zxvf sqlite-3.6.23.1.tar.gz

  cd sqlite-3.6.23.1

  (3)配置CONfigure脚本,使用相关选项生成编译文件Makefile文件:

  ./configure–-enable-share –-prefix=./sqlite-3.6.23.1/result –-hoST=arm-linux

  选项 -enable-share指定使用Linux的共享库

  选项 -prefix指定了安装目录为。/sqlite-3.6.23.1/result

  选项 -host指定了编译环境为目标机为arm的交叉编译环境

  (4)交叉编译,生成嵌入式终端下数据库的管理程序和库文件, 最终在result目录下得到数据库管理程序sqlite3(相当于Windows下Access程序),提供编程所需的API的动态库libsqlite3.so.0.8.6,编程所需的头文件sqlite3ext.h sqlite3.h。交叉编译的命令如下:

  Make

  Make install

  (5)将数据库管理程序sqlite3、提供编程所需的API的动态库libsqlite3.so.0.8.6及其1个软链接拷贝到开发板根文件系统相应位置,分别在嵌入式终端的/usr/bin和/usr/lib这两个目录下,命令如下:

  Cp result/bin/sqlite3  /arm-Linux/usr/bin

  Cp –l result/lib/libsqlite3.so*  /arm-linux/usr/lib

  (6)为了能在开发机上编译,调用了sqlite3数据库的API的应用程序,需要将动态库libsqlite3.so.0.8.6及其2个软链接、2个头文件拷贝到交叉编译工具链所在目录的适当位置,至此sqlite3数据库的移植和开发环境的配置已完成。只要输入SQL语言便可以进行相关操作。

  3.2 Linux下sqlite3的C语言开发

  sqlite3里最常用到的是sqlite3 *类型。从数据库打开时开始,sqlite3就要为这个类型准备好内存,直到数据库关闭,整个过程都需要用到这个类型。数据库打开时起,这个类型的变量就代表了所要操作的数据库。

  (1)打开数据库API接口函数

  int sqlite3_open(文件名, sqlite3 *);

  用这个函数开始数据库操作。需要传入两个参数,其中之一是数据库文件名,例如:/home/test.db文件名不需要一定存在,如果此文件不存在,sqlite3会自动建立;如果存在,就尝试把它当数据库文件打开。

  sqlite3 * 参数即前面提到的关键数据结构。函数返回值表示操作是否正确,如果是SQLITE_OK则表示操作正常。相关的返回值sqlite3定义了一些宏,具体这些宏的含义可以参考sqlite3.h文件。

  (2)关闭数据库API接口函数

  int sqlite3_close(sqlite3 *);

  如果前面用sqlite3_open开启了一个数据库,结尾时不要忘了用这个函数关闭数据库。

  (3)执行SQL语句API接口

  由于嵌入式sqlite3数据库支持SQL语言,因而调用C中相关执行函数就如同在终端下操作数据库一样方面快捷,下面是具体的API函数:

  这就是执行一条sql语句的函数。

  Int sqlite3_exec(sqlite3 * db, const char *sql,sqlite3_callback,Void * ,char ** errmsg);

  参数1是调用打开数据库函数sqlite3_open()打开的数据库对象。

  参数2 是一条待执行的SQL语句,其语法格式同标准SQL语言规范一样,如创建 table时插入的记录如下:

  create table student(id varchar(10) primary key, age smallint);

  此语句创建了名为student的表,表中定义了id(学号)和年纪两个变量,其中id是主键。

  Insert into student values(12345678,21);

  此语句向student表中插入一组数据(12345678,21),其中学号为12345678,学生年龄为21。

  对于数据库的其他操作,如数据库更新、修改、查找等用法同上。

  参数3 sqlite3_callback是自定义的回调函数,对执行结果的每一行都执行一次这个函数。

  参数4 void *是调用者所提供的指针,你可以传递任何一个指针参数到这里,这个参数最终会传到回调函数里,如果不需要传递指针给回调函数,可以填NULL。

  参数5 char ** errmsg是错误信息。sqlite3里面有很多固定的错误信息。执行sqlite3_exec之后,如果执行失败则可以查阅这个指针,即可知道执行过程中错误发生的位置。

  3.3 串口同sqlite3通信测试与分析

  为了验证sqlite3数据库在嵌入式Linux[3-4]终端下的执行效率和稳定性,为此做了一个简单的测试实验:通过上位机程序向嵌入式Linux终端的串口定时发送字符串;嵌入式Linux终端接收到字符串便立即写入到下位机的数据库中。自后查看数据中的数据,看看有没有遗漏和误码。上位机的程序使用VC6.0开发,整个程序界面只设了一个按键,按下按键,上位机就向嵌入式Linux终端不停地发送字符串数据,按键响应程序设计如下:


  可见程序是个定时100 ms便发送一条字符串的循环,而且发送的每一条字符串事先通过str.Format格式化为固定长度,本例中是11 B。按下按键后发送的第一条字符串为:“第1条记录”,每发送一条字符串里面的数字加“1”,这样写到数据库中就可以很清楚地查看有没有遗漏和误码,而且可以通过修改Sleep函数的延时参数检测出嵌入式Linux终端下sqlite3数据库操作的速度。

  下位机嵌入式Linux终端的程序设计为:先创建一个数据库文件test.db,接着就是一个死循环,串口不停地查找有没有数据写入,当检测到数据时,便写入到test.db中,若写入有误,则立即跳出循环,终止程序。


  4 结语

  整个测试根据上位机串口发送的频率不同做了多组实验,每组实验写入1 000个数据,最终结果分析如下:上位机在定时80 ms左右或大于80 ms的情况下发送数据时,数据库写入的误码率为零;当定时时间小于80 ms时,随着定时时间变小误码率会越来越高。通过数据分析可知原因有以下几点:一是数据库本身写入需用时几十毫秒,二是SD卡并非高速读写设备,当数据还未完全写入数据库时若有新数据发过来,则下次读写将会发生难以估计的错误。实验还得出了当把数据库文件写入到系统Flash上的总耗时约为50 ms,比写入SD卡中约少30 ms。不过就80 ms左右的一次读写速度而言,嵌入式数据库sqlite3执行效率和稳定性非常可观,现在一般的RFID读写器通过串口执行一条指令的时间也需几十毫秒的时间,因而使用sqlite3数据库在执行速率和稳定性上对于安检系统中RFID读写数据的处理可以很好地达到要求,而且sqlite3还支持数据加密,安全性同样非常出色。


 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭