当前位置:首页 > 通信技术 > 通信技术
[导读]摘要:针对圆网印花系统中导带驱动辊与圆网驱动对速度同步的要求,提出了基于IRMCK201和ZigBee技术的圆网印花同步控制系统,给出了同步控制系统结构。选用IRMCK201专用电机伺服控制芯片作为各驱动电机的伺服控制器,

摘要:针对圆网印花系统中导带驱动辊与圆网驱动对速度同步的要求,提出了基于IRMCK201和ZigBee技术的圆网印花同步控制系统,给出了同步控制系统结构。选用IRMCK201专用电机伺服控制芯片作为各驱动电机的伺服控制器,选用基于ZigBee技术的无线芯片CC2430作为系统主控制器和数据通信网络。设计了伺服控制电路、主控制器和无线通信节点电路以及相应的程序流程,实现了圆网印花系统各单元的速度同步控制。运行结果表明,该系统稳定可靠、抗干扰、能耗低、体积小、成本低,为纺织生产中圆网印花各驱动单元的同步控制提供了一种新技术。
关键词:圆网印花;同步控制;系统设计;IRMCK201;CC2430

    传统的圆网印花均采用集中传动方式,由电机通过减速装置带动长轴,长轴上根据印花机的套色数,分别传动各套色的过桥蜗杆经蜗轮驱动圆网,同时通过齿轮减速器和联轴节和蜗杆蜗轮副驱动导带主传动辊。这种集中传动的印花系统存在结构复杂,印花精度低,易“跑花”,对花速度慢,效率低,成品率低和设备维修成本高,印花导带与圆网之间的速差不可调节等缺点,不能应用于高档的精细印花生产中。随着计算机数字伺服系统和无线传感器技术的日趋成熟,将其应用到丝网印花的圆网独立电机速度控制,实现精细丝网印花速度同步控制,对提高印花精度和产品质量,具有重要的意义。
    本研究针对印花系统对圆网速度控制的要求,应用数字伺服控制专用芯片IRMCK201作为伺服控制和基于ZigBee技术的CC2430芯片作系统控制和网络通信,采用交流变频调速实现主动辊与圆网速度的同步控制系统。

1 系统组成及工作原理
    圆网印花同步控制系统由同步控制模块、速度检测模块、ZigBee无线通信系统等组成。速度检测模块采用光电编码器检测印花导带速度,将检测到的导带速度传输给同步速度控制模块:同步控制系统通过速度检测系统检测到各单元的速差,通过相应的处理实现系统的速度同步,ZigBee无线通信系统实现各速度控制单元之间数据可靠的传输。系统组成结构如图1所示。


    系统工作原理是:系统运行由ZigBee主控制器控制,各电机运行速度由ZigBee主控制器设定,通过ZigBee的无线通信模块将各电机的转速指令传输到各伺服控制单元的
    ZigBee接收模块上,通过IRMCK201的SPI接口,通过IRMCK201控制电机的转速。由光电检测器检测印花导带的运行速度,经光电编码器节点的ZigBee芯片进行处理,然后通过ZigBee无线通信模块传输至主控制节点,主控制节点的ZigBee处理器将接收到的速度信号与设定值比较,经相应处理后,传输至主辊电机及圆网电机的驱动智能模块,控制各单元电机的同步运行,满足印花精度的要求。主辊电机转速与印花圆网电机转速计算公式如式(1)所示。
   
    式中,v为导带设定的工艺速度;ω1为主辊电机设定转速;ω2为圆网电机转速;r1为主辊半径;r2为圆网半径。
    系统主控制器具有液晶显示以及操作控制按键,可显示系统各种运行状态和故障诊断,设定系统运行参数。
    系统通信采用基于ZigBee技术的无线网络,主控制器为网络主节点,设置为全功能节点(FFD),与各电机控制单元相连的节点为网络从节点,设置为半功能节点(RFD)。

2 系统设计
    为了实现主辊电机与圆网驱动电机之间的速度同步控制,主辊电机和圆网驱动电机均采用变频器进行调速。而主辊电机及圆网驱动电机均采用交流永磁同步电动机(PMSM),由于本系统中无需要考虑织物张力对同步速度的影响,主辊与圆网的速度同步控制采用IRMCK201控制器,各控制器之间通过基于ZigBee的无线网络实现数据通信。
2.1 系统主控制器设计
    本系统主控制器采用CC2430是TI(Chipcon)公司一款基于ZigBee技术的具有SOC(片上系统)功能的小体积无线系统芯片。
    该芯片上集成了基于ZigBee协议的RF前端、与8051兼容的微处理器、128 KB可编程闪存和8 KB RAM、14位ADC电路等。传输距离可大于75 m,传输速率最高250 Kb/s,工作温度为-40~+105℃,工作电压2.0~3.6 V,具有极短的休眠模式到主动模式的转换时间。CC2430在应用时可根据用户需要将其灵活设置为NC、FFD或RFD。主控制器基本电路如图2所示。


2.2 交流伺服控制模块设计
    图3是基于IRMCK201的主辊电机交流伺服控制系统结构图。IRMCK201是美国国际整流公司(IR)开发的数字运动控制芯片,是专门针对伺服驱动系统而设计的。该器件可实现完整的速度环和电流环控制,其中电流环带宽达5.5 kHz,采样控制周期约为6 μs,PWM的载波频率可达70 kHz,具有快速的高性能伺服驱动能力。不同于DSP式伺服控制,IRMCK201无需编程,只要选择其内部的功能与参数即可实现复杂的伺服控制功能及算法。


    该模块的基本工作原理:采用IR的专用电流传感器IR2175检测伺服电机的两路相电流,使用光电编码器获取电动机的转速与角位信息,经IRMCK201计算后得到电机的速度ω1,与ZigBee接收的参考速度进行比较,经片内2个独立的PI调节器进行调节,然后经IRMCK201内容的SVPWM模块产生PWM信号,经光电耦合电路加至智能功率模块(IPM)实现对电机的控制。电机运行状态通过IRMCK201的工作状态接口驱动相应指示灯工作,同时,通过ZigBee节点传输至系统主控制器。
2.3 电流检测电路设计
    电机电流检测采用单片高压电流传感芯片IR2175,通过外部的分流电阻检测电机的V、U相电流,将伺服电机的驱动电流转换成低电信号,输入到IRMCK201的电流传感器接口,由IRMCK201进行处理。基于IR2175伺服电机的U相电流检测基本电路如图4所示。其基本工作原理:高压侧供电电压VB和补偿电压均来自于Ufb,Ufb是U相驱动电源,低压侧供电与IRMCK201相同,PB接到电机定子U相绕组上,经采样电阻得到1个260 mV以内的采样电压信号至IR2175输入引脚VIN+,PBD是IPM的U相输出,输入至IR2175的VIN-与PB比较,从IR2175的P0口输出1个占空比随电流幅值大小变化的PWM数字信号,然后经过光电耦合电路输入到IRMCK201的电流传感器接口,实现U相的电流反馈,经IRMCK201比较和处理,由SVPWM输出相应的PWM信号,实现电流闭环控制。


2.4 电机转子和速度位置检测
    光电编码器输出增量式脉冲信号A+(A-)、B+(B-)、Z+(Z-)及带绝对信息功能的信号U+(U-)、V+(V-)、W+(W-)两组信号。经过滤波、整形后输入至IRMCK201的编码器接口,图5为A+(A-)信号处理的基本电路。A+(A-)信号经正交线性处理器得到AO,经整形后输入至IRMCK201的编码器接口。


2.5 通信模块设计
    本系统中数据通信采用基于ZigBee的无线网络通信,网络中主节点为系统主控制器,从节点与各电机速度控制单元集成,图6为与电机伺服控制单元集成的ZigBee节点基本电路。



3 系统程序设计
3.1 系统工作流程
    主控制器上电或复位,首先进行初始化,并建立一个新的网络,给出网络的ID号、频道号等网络信息;然后接受用户的参数设置,再进入无线监听状态,若空中有无线信号,如果是FRD加入网络。则给该加入网络的节点分配网络号和ID,直到系统从节点均加入网络;当接通开始按键,主控制器将开始信号及用户已设置好的速度值传输至各从伺服控制节点,控制各伺服控制模块启动并按设定的转速运行,同时接收并显示各伺服控制模块的工作状态信号,图7为主控制器程序流程图。


3.2 伺服控制模块的程序流程
    伺服控制模块的程序流程分为ZigBee从节点控制流程和IRMCK201速度控制流程。ZigBee从节点控制流程如图8(a)所示;IRMCK201速度控制流程如图8(b)所示。



4 结束语
    本文设计的基于IRMCK201和ZigBee的圆网印花同步控制系统,用其对某型四色机械式圆网印花机进行改造,控制伺服电机的功率为1.5 kW,伺服电机与驱动辊采用直联方式,最高运行车速可达100 m/min,纵向对花精度达±0.1 mm,圆网与导带速差可在±8%内调整,印花精度高,对花稳定,不跑花,达到了较高的印花精度。
    圆网印花同步控制系统利用IRMCK201的硬件电路实现速度环和电流环控制,使用ZigBee芯片的实时数据传输和处理能力,实现了圆网印花主导辊和圆网之间的速度同步和协调,由于ZigBee网络的可扩展性,该系统还可应用到较为复杂的同步控制系统中。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭