当前位置:首页 > 通信技术 > 通信技术
[导读]射频识别系统的结构与通信系统的基本模型相类似,满足了通信功能的基本要求。读写器和电子标签之间的数据传输构成了与基本通信模型相类似的结构。读写器与电子标签之间的数据传输需要三个主要的功能块,如图1所示。按

射频识别系统的结构与通信系统的基本模型相类似,满足了通信功能的基本要求。读写器和电子标签之间的数据传输构成了与基本通信模型相类似的结构。读写器与电子标签之间的数据传输需要三个主要的功能块,如图1所示。按读写器到电子标签的数据传输方向,是读写器(发送器)中的信号编码(信号处理)和调制器(载波电路),传输介质(信道),以及电子标签(接收器)中的解调器(载波回路)和信号译码(信号处理)。

 

  图1 射频识别系统的基本通信结构框图

  在图1中,信号编码系统的作用是对要传输的信息进行编码,以便传输信号能够尽可能最佳地与信道相匹配,这样的处理包括了对信息提供某种程度的保护,以防止信息受干扰或相碰撞,以及对某些信号特性的蓄意改变。调制器用于改变高频载波信号,即使载波信号的振幅、频率或相位与调制的基带信号相关。射频识别系统信道的传输介质为磁场(电感耦合)和电磁波(微波)。解调器的作用是解调获取信号,以便再生基带信号。信号译码的作用则是对从解调器传来的基带信号进行译码,恢复成原来的信息,并识别和纠正传输错误。

  1. RFID数据传输常用编码格式

  可以用不同形式的代码来表示二进制的“1”和“0”。射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(UnipolarHZ)编码、差动双相(DBP)编码、米勒(Miller)编码利差动编码。

  (1)反向不归零(NRZ,NON Return Zero)编码

  反向不归零编码用高电平表示二进制“1”,低电平表示二进制“0”,如图2所示。

 

  图2 NRZ编码

  此码型不宜传输,有以下原因:(a)有直流,一般信道难于传输零频附近的频率分量;(b)收端判决门限与信号功率有关,不方便使用;(G)不能直接用来提取位同步信号,因为在NRZ中不含位同步信号频率成分;(d)要求传输线有一根接地。

  (2)曼彻斯特(Manchester)编码

  曼彻斯特编码也被称为分相编码(Split-Phase Coding)。在曼彻斯特编码中,某位的值是由该位长度内半个位周期时电平的变化(上升/下降)来表示的,在半个位周期时的负跳变表示二进制“1”,半个位周期时的正跳变表示二进制“0″,如图3所示。

 

  图3 曼彻斯特编码

  曼彻斯特编码在采用负载波的负载调制或者反向散射调制时,通常用于从电子标签到读写器的数据传输,因为这有利于发现数据传输的错误。这是因为在位长度内,“没有变化”的状态是不允许的。当多个电子标签同时发送的数据位有不同值时,接收的上升边和下降边互相抵消,导致在整个位长度内是不间断的副载波信号,由于该状态不允许,所以读写器利用该错误就可以判定碰撞发生的具体位置。

  (3)单极性归零(Unipolar RZ)编码

  单极性归零编码在第一个半个位周期中的高电平表示二进制“1”,而持续整个位周期内的低电平信号表示二进制“0”,如图4所示。单极性归零编码可用来提取位同步信号。

 

  图4 单极性归零编码(4)差动双相(DBP)编码

  差动双相编码在半个位周期中的任意的边沿表示二进制“0”,而没有边沿就是二进制“1”,如图5所示。此外,在每个位周期开始时,电平都要反相。因此,对接收器来说,位节拍比较容易重建。

 

  图5 差动双相编码

  (5)米勒(Miller)编码

  米勒编码在半个位周期内的任意边沿表示二进制“1”,而经过下一个位周期中不变的电平表示二进制“0”。位周期开始时产生电平交变,如图6所示。因此,对接收器来说,位节拍比较容易重建。

 

  图6 米勒编码

  (6)差动编码

  差动编码中,每个要传输的二进制“1”都会引起信号电平的变化,而对于二进制“0”,信号电平保持不变,如图7所示。用XOR门的D触发器就能很容易地从NRZ信号中产生差动编码,具体电路如图8所示。

 

  图7 差动编码

 

  图8 从NRZ编码产生差动编码

  2. 选择编码方法的考虑因素

  在REID系统中,由于使用的电子标签常常是无源的,市无源标签需要在读写器的通信过程中获得自身的能量供应。为了保证系统的正常工作,信道编码方式首先必须保证不能中断读写器对电子标签的能量供应。另外,作为保障系统可靠工作的需要,还必须在编码中提供数据一级的校验保护,编码方式应该提供这T功能,并可以根据码型的变化来判断是否发生误码或有电子标签冲突发生。

  在RFD系统中,当电子标签是无源标签时,经常要求基带编码在每两个相邻数据位元间具有跳变的特点,这种相邻数据间有跳变的码,不仅可以保证在连续出现“0”的时候对电子标签的能量供应,而且便于电子标签从接收到的码中提取时钟信息患。在实际的数据传输中,由于信道中干扰的存在,数据必然会在传输过程中发生错误,这时要求信道编码能够提供一定程度检测错误的能力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭