当前位置:首页 > 通信技术 > 通信技术
[导读]摘要:提出了一种微波探测声音(微波窃听)的方法,并简要介绍了它的原理和实现方式。通过微波振荡器产生的微波,经天线发射后投射到待测声源处,被声源处的音频信号调制后反射回来,由天线接收后输送到微波晶体检波器

摘要:提出了一种微波探测声音(微波窃听)的方法,并简要介绍了它的原理和实现方式。通过微波振荡器产生的微波,经天线发射后投射到待测声源处,被声源处的音频信号调制后反射回来,由天线接收后输送到微波晶体检波器检波,再由小电流放大、电压和功率放大等处理,还原出声源处的声音信号,达到探测声音的目的。
关键词:微波探声;幅度调制;检波

0 引言
    微波在现实生活中有多种用途,例如:微波通信、微波雷达、微波测速等。本文介绍一种以微波作为载波来实现探测声音的实验方法,并且在实验室进行了测试。从实验结果看,能达到利用微波探测声音的目的。本实验原理简明,所用微波器件为实验室常见的微波器件,电路结构简单,易于实现。

1 实验原理
    微波探测声音的原理与广播类似,它利用高频的微波信号来“载驮”所要传送的声频信号,也就是高频微波信号的振幅随所传送的声频信号的变化而变化。高频微波信号为“载波”,调制微波的声频信号为“调制信号”。经过调制后的高频信号为调幅波。
   
    式(1)和(2)中Ω、F分别为调制信号的角频率和频率。载波为远高于调制信号频率的正弦波。
    调制的作用是使载波的振幅Vcm随调制信号vΩ而相应的变化,从而得到调幅波。调幅波振幅变化的轨迹即波峰点的连线称为包络线。调幅波包络线的瞬时值为:
   
    式(4)中,VΩm/Vcm称为调幅指数,用ma表示。
    语言、音乐等都不是单音频信号,而是由很多不同频率的波合成,它们不是标准的正弦信号。对于非正弦的周期信号,可以分解为多个不同频率的正弦波信号。典型的调幅波的频率成分,可以由它的瞬时值表示式推导出来,即
   
    这表明单音信号(即调制信号是正弦信号)的调幅波由三部分频率分量组成,即载波分量ω0、上边频分量ω0+Ω和下边频分量ω0-Ω。
    调幅信号的解调是振幅调制的反过程,是从高频已调信号中取出调制信号,常将这种解调称为检波。实现这种解调作用的电路称为振幅检波器。检波器由高频输入回路、非线性器件和低通滤波器三部分组成。因振幅调制信号由载波频率ω0和边频(ω0±Ω)组成,没有调制信号本身的频率分量Ω,但载频ω0与上边频(ω0+Ω)或下边频(ω0-Ω)之差可得到Ω。为了取出原调制信号频率Ω,从高频输入回路输入的高频已调信号,通过非线性器件产生新的频率分量,其中就包含所需的Ω分量,再用低通滤波器滤除不需要的高频分量,即可得所需的声音信号。

2 实验装置与基本器件
    本实验装置与基本器件组成图如图1所示。微波振荡器产生的微波,经隔离器和环形器由天线投射到待测声源处,作为载波的微波被声源处的音频信号调制后被反射回来,由天线接收(发射、接收天线为同一天线),再经过微波晶体检波器检波和电流、电压及功率放大,最后还原出声源处的音频信号。实验装置中所用到的振荡器、隔离器、环形器、角锥天线和晶体检波器均为实验室中常见的3厘米波段(X波段)的微波器件。



3 电路结构
    本实验所用的前置放大电路如图2所示。它包括两级,第一级由OP07构成的弱电流放大电路。由于一般情况下,检波后得到的电流形式的音频信号很微弱,为了达到较好的放大效果,实验中加了一级弱电流放大电路。根据运放电路的相关知识可知,输入电流I1流经R2和R3的流I2和I3的关系为,即输出电流的放大倍数为倍;第二级用NE5532运放构成一个低噪声的电压放大电路。NE5532是一种高速低噪声运算放大器。它的带宽为10 MHz,相比大多数标准运算放大器,它显示出更好的噪声性能,更高输出驱动能力和小信号带宽。


    自动增益放大电路(AGC)如图3所示。其基本原理是当输入信号幅度较大时,AGC电压控制可变增益放大器的放大倍数减小,当输入信号幅度较小时,AGC电压控制可变增益放大器的放大倍数增加。


    图3中,输入信号从运放F1的同相端输入,二极管VD对运放F1的输出信号整流后,经一个∏形滤波电路得到一个负向AGC电压,这一电压经过运放F2放大后送往场效应管3DJ6的栅极。当输入信号幅值较大时,相应地得到较大的AGC电压,运放F2输出较大的负压至场效应管3DJ6的栅极,增大了场效应管3DJ6的源漏极间的电阻,从而减小了运放F1的放大倍数;反之,当输入信号的幅值较小时,AGC电压也很小,运放F2输出也很小,场效应管3DJ6的源漏极间的电阻很低,使运放F1得到较大的放大倍数。


    功放采用低电压音频功率放大器LM386,电路图如图4所示。其电路电压增益可调,外接元件少,总的谐波失真小,对低电压信号的放大效果良好,且驱动能力强,输出信号可直接驱动8 Ω的扬声器。

4 实验结果及分析
    根据所设计的实验方案,我们在实验室制作了相关电路和进行了实验测试。实验结果如图5示:


    由图5可知,在图5(a)中,声源频率为5 kHz的正弦波,接收解调后信号较好的还原回正弦信号;在图5(b)中,声源为通常的声音信号时,接收解调后的信号能够较清晰的还原为原来的声音信号,此时输出端接音频喇叭能还原出声源处的声音。

5 结束语
    通过在实验室中的实验实测,由接收电路得到的信号能较好地还原原来的音频信号,证明本实验方法可行。本实验可作为一种趣味性或演示性实验开设,对拓展学生的知识面、提高学生的动手能力,加深学生对有关知识的理解有很好的帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭