IC智能卡失效机理分析
扫描二维码
随时随地手机看文章
IC智能卡作为信息时代的新型高技术存储产品,具有容量大、保密性强以及携带方便等优点,被广泛应用于社会生活的各个领域。通常所说的IC卡,是把含有非挥发存储单元NVM或集成有微控制器MCU等的IC芯片嵌装于塑料基片而成,主要包括塑料基片(有或没有磁条)、接触面、IC芯片3个部分。传统的IC卡制作工序为:对测试、信息写入后的硅晶圆片进行减薄、划片,分离成小芯片,再经装片、引线键合、包封等工序制成IC卡模块,最后嵌入IC卡塑料基板。
随着IC产品制造工艺的提高以及高性能LSI的涌现,IC智能卡不断向功能多样化、智能化的方向发展,以满足人们对方便、迅捷的追求。然而使用过程中出现的密码校验错误、数据丢失、数据写入出错、乱码、全“0”全“F”等诸多失效问题,严重影响了IC卡的广泛应用。因此,有必要结合IC卡的制作工艺及使用环境对失效的IC卡进行分析,深入研究其失效模式及失效机理,探索引起失效的根本原因,以便采取相应的措施,改进IC卡的质量和性能1。
由IC卡失效样品的分析实例发现,芯片碎裂、内连引线脱落(脱焊、虚焊等)、芯片电路击穿等现象是引起IC卡失效的主要原因,本文着重对IC卡芯片碎裂、键合失效模式及机理进行研究和讨论,并简略介绍其他失效模式。
1 芯片碎裂引起的失效
由于IC卡使用薄/超薄芯片,芯片碎裂是导致其失效的主要原因,约占失效总数的一半以上,主要表现为IC卡数据写入错、乱码、全“0”全“F”。
对不同公司提供的1739张失效IC卡进行电学测试,选取其中失效模式为全“0”全“F”的100个样品进行IC卡的正、背面腐蚀开封,光学显微镜(OM)观察发现裂纹形状多为“十”字、“T”字型,亦有部分为贯穿芯片的单条裂纹,并在顶针作用点处略有弯折,如图1。碎裂芯片中的裂纹50%以上,位于芯片中央附近并垂直于边缘;其余芯片的裂纹靠近芯片边缘或集中于芯片。
图2 芯片背面研磨损伤的OM照片
1.1 硅片减薄
标准的硅片背面减薄工艺包括贴片、磨片(粗磨、细磨)、腐蚀三道工序。常用的机械磨削法不可避免地会造成硅片表面和亚表面的损伤(图2),表面损伤分为3层:有微裂纹分布的非晶层;较深的晶格位错层;弹性变形层。粗磨、细磨后,硅片背面仍留有深度为15~20μm、存在微损伤及微裂纹的薄层,极大影响了硅片的强度。因此,需要用腐蚀法来去除硅片背面残留的晶格损伤层,避免硅片因残余应力而发生碎裂。实验发现原始厚度为725μm的硅片,经磨片后,腐蚀深度约为25μm时可得到最大的强度值3;同时,分析表明,芯片在键合与测试时发生碎裂,往往是由于磨片时造成的损伤在随后的腐蚀或化学机械抛光中没有被完全去除而引起的。
磨片过程不仅会造成硅片背面的微裂纹,且表面的残余应力还会引起硅片翘曲。硅片的背面减薄工芯对芯片碎裂有着直接的影响,因此需要开发新技术,实现背面减薄工艺集成,以提高硅片减薄的效率,减少芯片的碎裂。
1.3 模块工艺
模块工艺包括装片、包封等工序)的装片过程中,装片机顶针从贴片膜上顶起芯片,由真空吸头吸起芯片,将其粘结到芯片卡的引线框上。若装片机工艺参数调整不当,亦会造成芯片背面损伤,严重影响芯片强度:如顶针顶力不均或过大,导致顶针刺穿蓝膜而直接作用于芯片,在芯片背面留有圆型损伤坑;或顶针在芯片背面有一定量的平等滑移过程,留下较大面积的划痕,此现象在碎裂芯片中占了相当比例。
此外,伴随压痕作用,芯片常发生破片现象,即在压痕的周围有部分材料呈碎屑状。顶针作用时,在压痕表面下的形变带会有横向裂纹的产生,压痕作用消失后,横向裂纹会发生增殖直至样品表面,导致破片的产生。一般情况下,压力越大,破片现象越严重。
当顶针作用在芯片背面的滑移过程时,顶针端部受到垂直载荷成比例的摩擦阻力作用,使得接触圆的张应力随之增高。同时顶针滑过芯片,会在其背面留下条带状划痕,有可能产生细微碎屑,楔入硅衬底材料形成微裂纹,极大地影响了芯片的强度。
对开封后的IC卡芯片背面进行OM观察,发现约大部分碎裂芯片的裂纹处或其附近都存在顶针划痕,多为直线带有弯钩的形状,且裂纹在划痕处均有不同程度的弯折。划痕尺寸较大,一般长数十μm,宽大于10μm,且有一定深度,约为几μm(图6为20个样品划痕形状、大小统计数据所得示意图)。
在特定接触半径下,芯片表面接触圆外的张应力与离接触中心的径向距离间满足σr=σm(a/r)2,随离接触中心的径向距离r的增大σr下降。因此,在离顶针作用点一定范围内,芯片表面仍存在张应力表面层,为裂纹产生及扩展提供了非常有利的条件。
图6 顶针划痕示意图
图7 键合引线工艺中的失效机理
IC卡组装工艺中,因键合引起的失效也是影响IC卡质量和可靠性的重要因素之一。键合失效主要表现为IC卡电学特征上的不连续,如开路同时伴有短路、漏电等现象,或出现“输入高”或者“输入低”的失效。图7给出了与键合相关的诸多失效机理6。
图8 键合相关失效
水汽的侵蚀会引发电解效应,很大程度上加速金属电迁移。焊盘基底诸如C等杂质沾污则会导致空洞的产生,引起焊盘隆起。图8(c)所示为具有不连续电学特征的失效样品。SEM,EDX(图9)分析证明连结部位存在爆裂现象,且焊盘中有氯的存在。
3 注塑成型相关失效
与其他塑封IC产品一样,注塑成型时的冲丝、包封材料空洞等现象也会引起IC卡的失效问题6。环氧塑封料在注塑成型时呈熔融状态,是有粘度的运动流体,因此具有一定的冲力,冲力作用在金丝上,使金丝产生偏移,极端情况下金丝被冲断,这就是所谓的冲丝。
此外,注塑过程中留下的气泡、小孔以及麻点(表面多孔)在后续工艺后会扩散、增大,易造成潮气以及其他有害杂质的侵入,加速IMC的形成,引起焊盘腐蚀。
4 静电放电引起的失效
静电放电(ESD)是直接接触或静电场感应引起的两个不同静电势的物体之间静电荷的传输,常使芯片电路发生来流熔化、电荷注入、氧化层损伤和薄膜烧毁等诸多失效。
防护ESD的一种有效方法,即设计特定的保护电路。图10即为一种基于CMOS工艺的IC卡芯片ESD保护电路7。该结构包括两个部分:主保护电路和箝拉电路。在ESD发生时,箝拉电路首先导通,使输入端栅上的电压箝拉在低于栅击穿的电压。中间的串联电阻起限流作用,更重要的是使PAD上的电压能触发主保护电路的开启,使ESD能量通过主保护电路得到释放。
此外,与引线键合、注模相关的失效,如虚焊、脱焊、引线过松、过紧、冲丝或由于外界潮气的侵入和电学因素的共同作用而形成IMC等都将降低IC卡的可靠性,引起IC卡失效,可通过改进相应的工艺技术来减少此类失效的发生。ESD亦是IC卡失效的重要机理之一,严重时将导致Al线/多晶硅电阻烧穿、晶体管栅氧化层损坏或者结损伤,对此可通过设计专门的ESD保护电路徕提升IC卡芯片抗ESD的能力,以提升IC卡的可靠性。