当前位置:首页 > 通信技术 > 通信技术
[导读]如何让你的RF仪器发挥最大效能?新款 RF 仪器均具备绝佳的精确度与测量功能,已大幅超越之前的产品,但如果信号无法达到一定质量,这些仪器也无法发挥其功能;声音测量实际操作与相关要素,将可让使用者完全了解自己

如何让你的RF仪器发挥最大效能?

新款 RF 仪器均具备绝佳的精确度与测量功能,已大幅超越之前的产品,但如果信号无法达到一定质量,这些仪器也无法发挥其功能;声音测量实际操作与相关要素,将可让使用者完全了解自己投资的 RF仪器。

进行稳定的 RF 测量操作

在理想状态下,应可轻松进行 RF 测量操作,但实际上却有着许多难题;目前既有的 RF 仪器已经可以满足主要的 RF 测量,如功率、频率与噪声,但”获得结果”不见得就是”获得正确的结果”。若能在 RF 测量操作中建构最佳实作范例,就能确保获得稳定、精确,且可重复使用的测量结果。

先了解术语

诸如”精确度”、”可重复性”、”分辨率”,与”不确定性”的术语,都经常在 RF 应用中遭混用或误用,反而降低了测量的正确度。在进行 RF 测量操作之前,必须先了解重要术语,还有其正确的对应文字。

相对于模拟量表而言,当要在模拟量表上分辨正确读数时,仪器的数字显示方式绝对要简单许多。然而,如果数字显示器呈现小数点后 3 位的数值,则使用者也无法了解仪器或测量操作的分辨率与精确性。

即便可显示数千个 dB 的功率,或到小数单位的 Hertz 频率,也不代表该仪器就能测量数分钟之内的变化,所显示的位数应要能超过仪器的测量功能所及。为了完整了解 RF 仪器的功能,应随时参阅规格说明或数据,正确的术语定义,将可减少使用者对测量的疑虑。接着列出常见的几个关键术语:

˙分辨率 (Resolution)──仪器所能确实侦测的最小变化量 ;

˙可重复性(Repeatability)──在相同条件与结果之下,可重复进行的测量次数;

˙不确定性(Uncertainty)──将测得的未知绝对值予以量化 ;

˙精确度(Accuracy)──仪器在已知误差范围内所能测得的参数实际/绝对值。

如果能预估错误信息来源,往往就能决定测量操作的不确定性。除了上面提到的术语之外,也可以到 National Institute Standards and Technology (NIST) 或其它标准机构,找到相关规格说明文档。可追踪性 (Traceability) 则可确保所有测量仪器均是以常见标准所定义。

而”规格 (Specification)”则是由测试设备的保证效能,并可由 NIST 追踪相关校准认证。”典型、常见 (Typical)”意指已完全测试的效能,但并未纳入测量的不确定性。”名目、表列 (Nominal)”效能为辅助信息,而并非所有仪器都经过此项测量。

精确度为仪器在已知误差范围内所能测得的参数实际/绝对值,也就是所谓的 X plus 或 minus Y。如果没有某些误差限制与单位,则测量值”34”并无任何意义。同样的,仅有”5”的误差规格也无任何意义;但”5%”的误差标准也没意义。

“5%”可代表”±5%”,也可为”+3%”或”-2%”;举例来说,精确度的正确表示方式应为”34 V +/- 1 V”、”34 V +/- 1%”,或”34 V +2/-1 V”。进一步了解 RF 测量术语,就能更熟悉其意义。如果要与别人精确沟通测量操作,则应该先了解相关结果。

了解自己的受测设备

受测设备(Device under test,DUT) 可能大幅影响 RF 测量操作。举例来说,温度就可能影响稳定性与可重复性,许多 RF 设备与仪器并不会自行补偿温度变化,因此必须先稳定温度,才能将测量操作的漂移错误降至最低。还有立即的环境影响(如是否有空调循环、是否加盖与嵌板、处于室内或室外、是否靠近热源) 均应纳入变量考虑,并应注意暖机次数、DUT 冷却条件,与外围环境,与保持稳定的温度。

在主动式设备中,多余的功率可能造成设备发热;以高功率的放大器为例,DUT 本身可达稳定的温度,但后续的组件就不一定,衔接放大器输出的切换器与衰减器就常有升温现象。这时就可能要找出由放大器所产生的不定信号,如谐波。

电源供应线可能产生环境噪声,并直接影响输出;而当放大器处于压缩状态时,若测量其线性参数 (增益与相位) 也将无法得到相关结果。因为所有因素均将影响 RF 测量操作的精确度,在测量设备之前,先行了解 DUT、操作方式,与其对 RF 测量参数的影响,才能获得有意义的结果。

找出不确定性的范围

若要比对 RF 测试设备的规格与 DUT 的测量需求,还略显不足;如果 RF 测量操作的频率较高,而仪器又较不符合所需规格时,更加扩大不确定性的范围。接着各个测量步骤均可能发生错误,进而影响整体结果。当进行错误测量时,应先找出测量操作的可能错误,再找出可能影响的 DUT。

使用者应该了解仪器的重要操作规格,还有各个测量步骤所牵连的设备 (包含 DUT 在内);而其它相关规格则应了解配对、功率、频率响应与噪声系数。也应了解所有参数的容错范围,并记住如下的参数:

˙RF 切换的可重复性、老化程度,与功率承载;

˙耦合器的方向系数,连接线的相位稳定性,还有转接器的插入(Insert)损耗与折返损耗 (Return loss);

˙电路板线路的阻抗质量、适配卡插槽,与电路板的传输开关情形 ;

˙测量操作的电磁波干扰(EMI <http://www.eettaiwan.com/CAT_480602_EMI-EMC-design.HTM>)强度。

并未正式纳入考虑的还有冷却、谐波、混附信号(Spur),与其它非线性动作,均可能影响测量操作。可查阅整体设定情形,再找出各个部分的误差幅度,以得到测量不确定性的实际数据。另应找出错误来源,以了解其对精确度、可重复性与不确定性的影响,如此将可得到更精准的测量结果,并可高效率决定预算与资源。

注意所有组件与连结

产品的开发、设计、测试,直到上市的成本,都是巨额的投资。公司的能否延续,可能就以 1 款产品的效能而定生死。对高效能的 RF 测试设备来说,由于必须能满足甚或超过目前市场所需的重要规格,因此其可能投入的资金更是难以估计。除了必须具备竞争优势之外,也可能影响公司的后续营收。

但是昂贵、高效能,且精确校准过的 DUT 与测试系统还不够,针对中间用以衔接设备用的连结组件,也必须考虑其质量与可重复性。若能提升关键规格达 1/10 或 1/5 的 dB,就可能达到高竞争优势。

对绝大部分的标准而言,最好是能达到 1:1.5 的电压驻波比(VSWR),但匹配(Match)的强度也可能影响错误的为匹配的不确定性达 +/-0.35dB (约略值)。当造成过多的不确定性时,就不可能达到 0.2 dB 的关键规格。

其它受到忽略的项目 (如连接线、切换器、衰减器、插槽、转接器,与配件) 也能影响整体的测量结果。如果要开始测量操作,应先达到所需的精确度,接着选择合适的组件。依目前公认的标准,测量系统的效能最好达到 DUT 受测参数的 10 倍之谱。

如果已经拥有高质量的信号路径,则接着就是安排完整的测量实作;使用者应确保清洁并存放连接线、接头,与转接器,就算是最高级的连接线与转接器也会磨损,若零件老化就应淘汰,这些都算测试操作的耗材,并应逐步减少转接器的使用机会。

此外应定期使用扳手与线路量表进行调整,即可尽量避免热切换(Hot-switching);并请注意,应适时静电放电 (Electro-static discharge,ESD)。即便于测试系统与 DUT 之间使用最高质量的组件,若连接的零件过多,也可能造成测量错误。

为测量操作选用正确的工具

根据所要测量的参数与所需的精确度,其测量 DUT 的 RF 设备也有所不同。能投资设备当然最好,但如果仅能发挥设备某部分的效能,就形成预算浪费。如果仅需测量 RF 功率,则 RF 功率计当然优于矢量信号分析仪 (VSA)。

标量(Scalar)仪器仅能测量强度 (振幅),而矢量仪器则可测量强度与相位。就算测量操作不需相位值,则由于矢量仪器的相位信息可找出系统中的无用反射并将之量化,因此也可用以修正错误。

在购买 RF 设备时,价格往往并不等同于功能。高质量的扫频调协频谱分析仪(Swept-tuned spectrum analyzer),往往就能占去大部分的预算;就该款仪器原始的测量功能而言,虽然已可达 ± 1 dB 或较差的精确度并可用于一般测量,但却无法满足绝对 RF 功率的测量需要。同样的,若使用中的仪器可达 -140 dBm/Hz 的噪声水平,此款仪器就难以测量 -155 dBm/Hz 噪声水平的 DUT。

所以请为测量选择正确的工具;若购买的设备效能超出所需的测量精确度太多,就浪费了成本与资源,而且可能排挤到其它部分的预算分配。在某些情况下,连接线与切换器甚至更有助于提升测量质量。

开发测量程序

一旦建构自己所需的最佳实作,就可以将其安装到测量程序中,更有利于整个团队的沟通,接着就能让 RF 测量结果达到更好的可重复性与一致性。举例来说,测量程序的常见问题之一就是:”应多久校准 1 次”。

许多 RF 仪器对环境的变化极其敏感,因此就必须时常校准设备;高精确度的测量需求也常常影响了校准频率。不论哪种情况,均应了解 RF 设备的校准需求,并将之列入测量程序中。

从设计、检验、测试,到制造的所有程序,都会影响 RF 的测量功能。使用者也需考虑制造过程所应测试并检验的操作参数,而可能影响精确度、可重复性,与不确定性的前/后 1 项程序 (如重新操作、焊接、组装,与绝缘),均应纳入考虑。

若要建构良好的 RF 实作,也应考虑相关程序。也可连带简化学习与标准化的过程。而后续从建构程序直到产品使用寿命,”一致性”也将影响 RF 参数与测量结果。

提高 RF 测量操作的质量

要进行 RF 测量操作很简单,但要能准确测量就有些许难度。若能建构完整实作并用于程序之中,将可提升 RF 测量的质量。

还有许多方法可找出并建置最佳实作范例。应不断设法提升 RF 测量质量,以确实了解测量要点并用于实作之中。从提高 RF 测量技巧到完整发挥 RF 设备的效能,此篇技术文章所提及的步骤均属于基础概念而已。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭