当前位置:首页 > 通信技术 > 通信技术
[导读] 本文设计的用于软件无线电台12 b A/D转换器中的高精度,高速运算放大器,采用了增益提高电路,在不影响频率响应的同时,得到普通运放所达不到的高增益。  1 高精度,高速度模数转换器对运算放大器指标的要求  

 本文设计的用于软件无线电台12 b A/D转换器中的高精度,高速运算放大器,采用了增益提高电路,在不影响频率响应的同时,得到普通运放所达不到的高增益。

  1 高精度,高速度模数转换器对运算放大器指标的要求

  为了达到12 b的A/D,第一级转换器出来的信号误差必须要小于后级所能辨认的最小精度,比如本文需要设计第一级的运算放大器,他后面一级的最小分辨力是10 b,那么,所设计的这个放大器的误差系数。

  本文设计的运算放大器,用在12 b模数转换器中,模数转换器采用流水线结构,每一级的比特数为2.5 b,电路的方框图如图1所示。

  图1中放大器接成负反馈形式,CS是输入采样电容,Cf是环路反馈电容,在2.5 b每级的应用中,CS=3Cf,闭环增益是4倍,这种2.5 b每级的结构,比传统的1.5 b每级的结构,放大器的数目减少了一半,可是由于闭环放大倍数变大了1倍,所以,反馈因子减小到一半,可以算出,运放的反馈因子大约为:

  


 

  上式中的β为反馈系数,Copamp是运算放大器的反馈电容。

  

 

  运算放大器可能会导致静态误差和动态误差,静态误差是由于运放的直流增益不可能为无穷大而导致的,而动态增益是由于运放的响应速度不可能为无穷快而导致的,经过分析,可以得到静态误差的方程,表示为直流增益ADC和反馈系数的函数,如下:

  

 

  为了分析所设计的运算放大器的速度要求,需要把所能容忍的误差系数和电路的建立时间(Settling Time)联系起来,为了便于分析,我们先分析环路中只有一个主极点的情况,利用一阶响应三要素法,因为需要设计的模数转换器的工作频率是100 MHz,所以放大器的建立时间tsettle要小于4.5 ns,立即可以得到放大器的单位增益带宽为:

  

 

  利用式(2),式(3),可以得到满足12 b A/D转换器要求的指标,如表1所示。

  

 

  2 电压增益模型

  基本的增益提升技术应用于Telescopic放大器的电路如图2所示,图中的MN1,MN2,MP1和MP2组成了基本的Telescopic放大器,但是若不采取其他措施,在0.13 μm工艺的条件下,电压增益通常只能到60 dB,而从前面的分析来看,这样的增益是不够的。

  

 

  图中的OPp和OPn是两个增益提高电路,有了这两个辅助的放大器之后,输出电阻可以表示成为:

  



式(4)中忽略了衬底效应和高阶效应,通过上面的方程,可以看出,电压增益在原来的基础上提高了很多。比如,0Pp和OPn的增益各为40 dB,那么加上原来主运放的增益,我们能够轻易得到100 dB的增益,完全满足12 b数模转换器的精度要求。

  3 频率响应模型

  增益提高技术,虽然大幅度提高了放大器的电压增益,但是电路变复杂了,频率响应必然受到影响,为了分析这种技术给主运放带来的影响,可以画出频率响应小信号等效电路图,如图3所示。

  

 

  图3表明,电路的主极点是在输出点,负载电容大,输出电阻非常高,极点的位置在p1=1/(2πRoutCload)。主运放的第二个极点在点①处,电容是①点的寄生电容,Boot-ser的输入电容,M1管的Miller电容CGD,和M2管子的源极输入电容。位置为p2=gM2/(2πC1)。在频率响应中,一阶主极点引起的响应是指数逼近的响应,而其余的极点和零点则会引入非指数的响应,为了不过多地引入超调响应,或者是减慢响应速度,要求Booster除了要提高电压增益外,还不能影响运放的频率响应。文献[4,5]中给出了设计的要点,表现成不等式为:

  

 

  其中,ωu,main是主运放的单位增益带宽,ωb是增益提高运放的单位增益带宽,ωP2,main是主运放的次极点。式(5)表明,设计Booster时候,Booster不能太快,如果超过主运放的第二个极点,则会出现超调现象,同样也不能太慢,如果比主运放的3 dB带宽(第一个极点位置)还要慢,则会使整体的速度变慢。由于我们要设计的运放单位增益带宽为1.4 GHz,反馈系数为0.2,可以得到3 dB带宽约为300 MHz,故设计Bootser单位增益带宽为500 MHz,直流增益为40 dB。电路图如图4所示。图中使用了连续时间的共模反馈电路。

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭