当前位置:首页 > 通信技术 > 通信技术
[导读]标签:电磁干扰 噪声频谱①电磁骚扰源,②耦合途径或传播通道,③敏感设备。电磁骚扰的传播途径电磁骚扰的传播途径包括传导耦合和辐射耦合。传导耦合必须在骚扰源和敏感设之间有完整的电路连接。这个传输电路可包括

标签:电磁干扰  噪声频谱

电磁骚扰源,②耦合途径或传播通道,③敏感设备。

电磁骚扰的传播途径

电磁骚扰的传播途径包括传导耦合和辐射耦合。

传导耦合必须在骚扰源和敏感设之间有完整的电路连接。这个传输电路可包括导线、设备的导电部件、供电电源、公共阻抗、接地平面、电阻、电感、电容、和互感元件等。

辐射耦合是通过介质以辐射电磁波形式传播,骚扰能量按电磁波的规律向周围空间发射,常见的辐射耦合有三种:①骚扰源天线发射的电磁波被敏感设备天线意外接收,称为天线对天线耦合;②空间电磁场经导线感应而耦合,称为场对线的耦合;③两根平行导线之间的高频信号感应,称为线对线感应耦合。

传导耦合包括互传导耦合和导线间的感性与容性耦合。辐射耦合包括近场耦合和远场耦合。

电磁骚扰敏感设备

一般将端口分为以下5类:

①外壳端口;②交流电源端口;③直流电源端口;④控制线/信号线端口;⑤接地端口,即系统和地或参考地之间的连接。

根据形成电磁干扰三要素可知,要实现产品的电磁兼容,须从三个方面着手:抑制电磁骚扰源;切断电磁骚扰耦合途径;提高电磁敏感设备的抗干扰能力。

电磁骚扰(EMI)定义

电磁骚扰由寄生的、无用的传导和/或辐射的电信号组成,可能造成系统或设备的性能发生不允许的降级。

在时域内,电磁骚扰可以是瞬变的、脉冲的或稳态的。在频域内,电磁骚扰所包含的频率分量范围可从50Hz的低频直到微波波段;电磁骚扰信号可以是窄带或宽带的,相参或非相参的。电磁骚扰可分为人为的或自然的。

电磁骚扰源分类

电磁骚扰源大致可分为自然骚扰源和人为骚扰源。

电磁骚扰源还可分为宽带或窄带骚扰。宽带骚扰可以进一步分为相参或非相参的。

宽带电磁骚扰:传导与辐射的电磁信号,其振幅随频率变化(频谱密度函数)的频率范围大于指定感受器的带宽。在宽带噪声环境中,感受器的响应对相参噪声信号而言与其频率带宽成比例,对非相参噪声信号而言与其频率带宽的平方根成比例。宽带信号的频谱密度振幅函数,除了是频率的函数外,还要用指定的带宽来表示。宽带噪声可定义成一个函数,其频谱密度在感兴趣的频率范围内是频率的连续函数。

窄带电磁骚扰:其振幅随频率变化(频谱密度函数)的频率范围窄于指定感受器的带宽。在窄带噪声环境中,一旦感受器的带宽大于噪声信号的频率范围时,感受器的响应就与其带宽无关。窄带噪声可用数学来定义时,其频谱密度在感兴趣的频率范围内作为频率函数的一根谱线。

电磁噪声的频谱

电磁噪声的频谱非常宽。

我们不必要去研究每一条谱线及其相位,甚至对其包络的变化细节也不必过分地关心。一般只需注意包络顶端连线的变化规律,就能对不同时域波形相应的频域特性有个大体的了解。这种了解对于理解电磁噪声的传播以及电磁兼容测量已是够了。

电磁骚扰的幅度(电平)

骚扰幅度可表现为多种形式,除了用不同型号的幅度分布(即概率,它是确定的幅度值出现次数的百分率)表示外,还可用正弦的(具有确定的幅度分布)或“随机的”概念来说明骚扰性质。

电磁骚扰的波形

电气骚扰有各种不同的波形,如矩形波、三角波、余弦形波、高斯形波等等。由于波形是决定带宽的重要因素,设计人员应很好地控制波形。为了保持定时准确度或保证某种形式的准确动作,有时需要上升很陡的波形。然而,上升斜率越陡,所占的带宽就越宽。

各种波形占用带宽由宽到窄的排列为:

矩形波-锯齿波-梯形波-三角波-余弦形波-高斯形波。

由此可见,使干扰减小到最小的方法之一,是在可靠工作的情况下使设计的脉冲波形,具有尽可能慢的上升时间。通常脉冲下的面积决定了频谱中的低频含量,而其高频成份与脉冲沿的陡度有关。在所有脉冲中,高斯脉冲占有频谱最窄。

电磁骚扰的出现率

骚扰信号在时间轴上出现的规律称为出现率。按出现率把电函数分为周期性、非周期和随机的三种类型来考虑。周期性函数是指在确定的时间间隔(称之为周期)内能重复出现;非周期性函数则是不重复的,即是没有周期,但出现是确定的,而且是可以预测的。随机函数则是以不能预测的方式变化的电函数,它的表现特性是没有规律的。随机函数的定义允许限定其幅度或频率成份,但要防止用时间函数来分析、描述它。

通常,干扰问题中遇到的周期电压和电流是功能性的,它们的产生是为了特定的目的,如50Hz电源及其谐波或遥测信号。许多非周期性电压和电流也是用于特定目的,如指令脉冲。然而随机电压电流则是无用副产品,或是自然产生的,如热噪声。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭