当前位置:首页 > 通信技术 > 通信技术
[导读]图9.1中举例说明了工作中的电流环的基本互感耦合。电流离开门电路A,经由信号返回路径X流回源端。由于电流路径X、Y和Z相互重叠,路径X的磁场将在信号路径Y和Z上感应出噪声电压。因为路径Y与路径X的重叠面积大于路径X

图9.1中举例说明了工作中的电流环的基本互感耦合。电流离开门电路A,经由信号返回路径X流回源端。由于电流路径X、Y和Z相互重叠,路径X的磁场将在信号路径Y和Z上感应出噪声电压。

因为路径Y与路径X的重叠面积大于路径X路径X的重叠面积,所以路径Y上的感应噪声大于路径Z上的感应噪声。事实上,产生互感噪声不需要路径完全重叠,任何两个相邻近的电流环都会相互影响。

连接器的引脚之间也会有寄生电容,但在数字电路中,寄生电容引起的串扰要比互感引起的串扰小。现在我们首先重点讨论问题较大的部分:电感。

1、估算串扰

对于图9.1中任意信号引脚之间信号串扰的大小,估算一般需要3个条件。

两个电流环之间的互感
源信号DI/DT的最大变化率
接收网络的阻抗以及是否为源端或末端端接

考虑到两个环路之间的互感,我们要找出最坏情况下的串扰,因此以下重点考虑两个直接重叠的环路之间的相互影响,如图9.1中的环路X和环路Y。

环路Y内的全部磁能量来自于两个方面:首先是从门电路A流出并沿着信号线传输的电流,其次是沿着地线传输返回信号电流。因此互感公式包括两项,其中的第二项(地线项)大于第一项:

(式1)

其中:A=信号X到信号Y的距离,IN
      B=信号Y到地线的距离,IN
      C=信号X到地线的距离,IN
      D=连接器引脚的直径,IN
      H=连接器的引脚长度,IN
      LX、Y=环路X和Y之间的互感,NH


上式中假设连接器是单排的,而且引脚相对较长。即使这些假设不成立,由于对数函数的特性,由上式也很容易得到在一个数量级内精确的结果,这足以准确地判断连接器的串扰特性是否是一个值得注意的问题。如果连接器的特性关系到系统的性能,那么就买一个连接器并测试它的性能。

下面需要讨论的问题是系统中DI/DT的最大值,我们采用式()或式()来估算DI/DT。

最后一个条件涉及到噪声接受电路拓扑结构。图9.2给出了选择的方案:第一种情况,驱动器紧靠着连接器连接,这里“紧靠”的意思是驱动器到连接器的距离在一个上升沿的电气长度之内,见式()。第二种情况,涵盖了其他所有的结构形式,包括源端端接。

在第二种情况对应的结构中,耦合噪声在两个方向上各分一半。在第一种情况下,耦合进的噪声迅速在低阻抗驱动端反射,使接收端的耦合噪声加倍。

下面的公式给出了由于来自门电路A的单个阶跃输入,环路Y上感应出的噪声脉冲的高度。该脉冲的持续时间与输入脉冲的上升沿时间相当。

减缓驱动信号的上升沿时间可以直接减少串扰。如图9.3所示,在连接器的源端并联电容,可以减小驱动信号的上升时间。如果在接收端放置电容,只会使驱动端信号跳变时流过连接器的冲击电流增加,使情况变得更糟。


2、如何通过接地改变返回电流路径

下面给出了连接器特性的5个准则,结合式1,可以帮助估算连接器不同的接地排列时的性能。当对一个系统进行计算调整时,这些准则很有效。同时,使用这些准则,当提出不同的变更之后,我们可以预测将会发生什么情况。

准则1 在图9.1中,通过改变接地模式,可以减小特定线路之间的互感。如果将地线移至距离环路X和Y更远的地方,即增大B和C的值,式1中的两项都会增加,互感LX、Y会增大。反之,将地线靠近环路X和Y,将会减小其互感。互感的变化与距离的对数值成正比。

准则2 额外增加的地会有更直接的效果。记住式1中第二项(地线项)最大。由于地线与环路X和Y紧密耦合,地线上的电流对环路Y有很大的影响。如果我们能将地线上的电流分为两半,互感LX、Y几乎会减少一半。

如图9.4所示,通过在信号X上方增加一条地线,把地线上的电流分为两半,电流将分为两部分,分别流经每一条地线。相应地,互感LX、Y也会减小。增加更多的地线将进一步分散地线电流,但是不再像最初那样将电流一分为二。

准则3 在信号X和Y之间插入地线与在它们之外增加地线有很大的差别。如果我们在X和Y之间增加N条地线,如图9.5所示,使两者的间距加大,它们之间的耦合随之成比例下降,耦合正比于:

准则4 耦合到连接器上任意给定线路噪声来自其他每个线。简单地减少连接器上的信号个数就能减小总的串扰。另一方面,将连接器上的信号分成几组。通过在各组之间插入地线即可减少其相互干扰。分组有效地减少了对特定的接收器产生严重串扰的线路数量,串扰基本上与地线之间的信号线数目成正比。

准则5 在连接器边沿增加额外的地线减少串扰几乎不起作用,在连接器边沿采用大的接地效果也一样。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭