当前位置:首页 > 通信技术 > 通信技术
[导读]随着视频和数据传输业务对电缆带宽需求的提高,下行数据速率正在以30%~40%的速率逐年提高。此外,消费者也希望以相同的数据速率使用家中不断增加的互联装置。从长期目标来看,当前采用的模拟下行调制解调器很难满足成

随着视频和数据传输业务对电缆带宽需求的提高,下行数据速率正在以30%~40%的速率逐年提高。此外,消费者也希望以相同的数据速率使用家中不断增加的互联装置。从长期目标来看,当前采用的模拟下行调制解调器很难满足成本要求。服务提供商还注意到,通过升级改造现有接入平台来满足不断增长的带宽需求的做法非常昂贵。

 

由此可见,用户和服务供应商面临着同一问题:模拟收发器已经无力来满足越来越高的带宽需求。取而代之的是新一代数字RF调制器,它可提供高密度、低成本的解决方案,来满足将来的带宽需求。数字RF调制器采用直接变频架构,使得融合接入平台(CCAP)能够支持整个频带的正交调幅(QAM)传输。这些数字RF调制器的容量最高可以达到模拟调制器的32倍,而每个QAM发射信道的功耗仅为模拟技术的大约二十分之一。

 

本文介绍采用直接变频架构实现CCAP系统数字QAM调制器的原理和优势。

 

利用直接变频收发器取代模拟收发器的原因

 

有线电视(CATV)的CCAP平台( 图1 ) 集成了两种下行业务传输方式:一种是用于视频的边缘QAM设备,另一种是用于高速互联网接入的电缆调制解调器终端系统(CMTS)。QAM调制数字载波包括广播电视和窄播业务,例如:视频点播(VoD)、交换式数字视频(SDV)及高速互联网。这些载波介于50MHz~1000MHz带宽的下行CATV频谱。多达158个(6MHz带宽)QAM载波(信道)占据CCAP前端每个射频端口的整个频谱。每个线卡可容纳最多8个~12个射频端口,每个13RU CCAP机箱可容纳5块下行线卡。

 

 


 

 

下行CCAP物理层(PHY)要求高度密集的RF调制器,所以,这些QAM调制器必须具有低功耗、可扩展性和QAM载频捷变等特性。前期的射频前端设备将来自多个超外差模拟发送器的QAM载波组合起来,使之位于CATV频谱(图2),这种方案中的每个CCAP射频端口功率可能需要超过300W。直接变频发射器在数字域很容易实现QAM载波的上变频(DUC)和调制,并可利用ASIC或FPGA实现(图3)。由于QAM载波的整个频谱通过单个RF链路发射,只有通过宽带RF数/模转换器(RF DAC)才能实现这种数字架构。

 

直接变频发送器在CCAP系统中具有明显优势:整个信号处理在数字域实现,受益于CMOS工艺结构。CMOS工艺允许以较小的占位面积和低功耗实现非常高的信道密度,通过以下示例将很容易理解这种方法的优势。

 

MAX5880是一款驱动RF DAC的128通道DUC和QAM调制器,从FPGA接收前向纠错(FEC)编码的符号,执行QAM调制、脉冲整形,以及每个QAM通道的重新采样,然后对128路QAM通道进行组合、内插和调制,以驱动RF DAC。RF DAC的采样率必须高于2Gsps,用于合成整个CATV频带信号,它也必须满足严格的DOCSIS RF指标要求。这种设计采用14位4.6Gsps的MAX5882 RF DAC。

MAX5882以超过4Gsps的刷新速率对1GHz带宽信号进行过采样。注意,根据奈奎斯特原理,同步1GHz频带要求采样率略高于2GHz。但如果使用2.5GspsDAC,由于频率混叠,主要的谐波失真分量(例如2次谐波(HD2)和3次谐波(HD3))会折返至1GHz电缆频谱内(图4A)。这些失真会破坏DOCSIS发送器的带内RF性能。使用4Gsps DAC(图4B)时,HD2和HD3则不会折返到有效的CATV频带。

 

 


 

 

数字RF QAM调制器芯片组的RF输出如图5所示,128路6MHz带宽通道,覆盖1GHz频率范围。射频性能完全符合DOCSIS RF要求,发送128路QAM信道时,DUC和DAC的总功耗大约为6W。与传统的模拟RF调制器相比,每个QAM信道的功耗节约大约95%。

 

 


 

 

总结

 

新一代数字调制器充分利用了现代化技术优势,例如:高性能宽带数/模转换器和CMOS工艺技术。数字射频调制器是高度集成的解决方案,也满足严格的DOCSIS RF性能要求。现在,电信公司能够以当今的成本效率为有线电视业务服务商提供满足未来宽带要求的技术。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭