当前位置:首页 > 通信技术 > 通信技术
[导读]从很早以前,多天线技术便已在移动无线系统中得到使用。在早期的基站发射和车载移动台接收时期,大蜂窝小区网络拓扑结构中多路径传播会产生选择性衰 落,因而影响到信号质量,特别是在市区内这样的问题更加严重。以

从很早以前,多天线技术便已在移动无线系统中得到使用。在早期的基站发射和车载移动台接收时期,大蜂窝小区网络拓扑结构中多路径传播会产生选择性衰 落,因而影响到信号质量,特别是在市区内这样的问题更加严重。以往的办法是使用基站发射和车载接收机天线分集来解决这个问题。随着手机变得越来越小,车载 通信装置经过简化而开始采用蓝牙音频连通性技术,移动设备中的接收分集已经逐渐淘汰。不过,这一趋势很快将发生变化:最新的无线局域网实施使用了多天线空 间流,能够增加发射带宽和速度。随着实施这一先进技术的低成本硬件的问世,首次发布的3GPP LTE(第三代合作伙伴计划长期演进)标准,特别是其TDD(时分双工)版本已经提议并实施了各种多天线技术。

再次说明一下,基础的无线信道使用的是单路发射和单路接收天线,称为SISO(单路输入单路输出)。这种简单的无线信道设定了信号传输性能的基准,在此基础上可以对所有更复杂 的传输配置进行测量。SIMO(单路输入多路输出)提供了比SISO基准更大的接收天线冗余,支持在接收机中使用接收分集技术,例如最大比合并等。这可以 改善在设备接收机上观测到的SINR,并有助于改善信道衰落条件下的性能。 MISO(多路输入单路输出)提供发射天线冗余,像在LTE情况中一样,支持使用Alamouti符号编码或空频分组编码(SFBC)等发射分集技术。与 SIMO一样,这也可以改善在设备接收机上观测到的SINR,并可帮助提供保护,防止信道衰落。 无论是SIMO还是MISO都不能提高数据吞吐量,但它们可以降低误码率,从而减少需要重发的数据量。

冗余可用来改善上面所述使用相同发射和接收分集技术的设备接收机上的SINR,或者 可以牺牲部分或全部可能的SINR性能改善,以便获得更高的频谱效率。空间多路复用发射技术(使用发射天线发送独立数据流)可以为单一用户提供更高的数据 吞吐量(SU-MIMO或单用户MIMO),或增加系统蜂窝小区容量(MU-MIMO或多用户MIMO)。

除了这些分集和空间多路复 用技术之外,还可以使用多天线配置将发射或接收集中在特定方向上。这种技术称为波束赋形,取决于具体应用,可以采用固定波束赋形或可变波束赋形,并能够改 善系统性能。波束赋形技术可在许多不同频率的应用中使用,包括声纳和地震学、声学、无线通信、射电天文学和雷达等。

总之,无论何时从 两个或多个空间分离的发射点发送相同的信号,都会出现干扰方向图。发射波束赋形就是利用这种干扰方向图进行工作的。无论何时利用波束赋形技术从两个或多个 空间分离的接收点接收相同的信号,都可使用同样的原则。举一个简单的例子,当使用单个全向天线发射射频无线信号时,产生的信号相对场强如图1(a)中的蓝 色实线所示。为了能够发射波束赋形信号,需要添加另一个同样的全向天线阵元,与第一个天线阵元距离间隔半个射频载波波长,见图1(b)。在此例中,两个天 线阵元都传输待发射信号信息符号的相同副本。我们可以立即看到,在大约0°方位角的方向上发生了相长(同相)干扰,合并后的场强增加,在这个方向上产生有 效相干信号功率增益。相反,在大约+/-90°的方向上会发生相消(异相)干扰,合并后的场强会降低或衰减。

在同一个轴上与前两个天 线阵元间隔半个射频载波波长的位置上添加第三个天线阵元,可改善合并后相对场强的空间选择性,见图1(c)。在此例子中,天线单元经过同极化、相关,并沿 着单一天线阵元轴向均匀分隔,构成了一个均匀线性阵列(ULA)天线系统。在相对ULA宽边为0°的方向上的单一主瓣信息清晰可见。在这个方向上会发生最 大相长(或同相)干扰,在合并后的场强波束方向图中产生最大的功率增益。现在我们可以看到两个不同的功率衰减零点(null)的信息,主瓣一侧位 于+/-42°方位角上。这两个最小功率位置表示在合并后的场强波束方向图中发生了最大相消(或异相)干扰的方位方向。

TD-LTE蜂窝小区边缘性能" />

图1:ULA波束赋形实例

最后向ULA添加第4个天线阵元可进一步改善主瓣选择性,见图1(d)。功率零点的数量也从两个增加到三个。两个零点现在位于+/-30°方位角,第三 个位于ULA天线轴线上。现在,两个不同功率旁瓣的信息清晰可见,位于+/-50°方位角处。两个旁瓣的功率电平都低于主瓣。最终的波束方向图不仅由 ULA物理几何形状和阵元间距决定,还受到每个天线阵元上发射的每个信息符号副本所接受的相对幅度和相位加权的影响。这可以通过在四个天线阵元中的每一个 上引入+90 °相对相移来证明。结果是主波束位置从0°方位角转移到-30°方位角,如图1(e)所示。请注意,零位和旁瓣位置还受新加权值的影响。

通过精心设计波束赋形天线阵列的几何形状,再加上精确控制对每个天线阵元所应用的相对幅度和相位加权,不仅可以控制主瓣功率传输的选择性形状和方位方 向,还可以控制功率零点方位位置和旁瓣电平。让我们现在单独考虑添加额外的天线阵元对在目标设备接收机上观测到的结果波束方向图的有效功率增益的影响。

图1(b)显示了添加另一个天线阵元的过程。该天线阵元与第一个天线阵元发射完全相同的符号副本。在此例中,相长(同相)信号之和将会导致位于0°方位 角主波束位置处的目标设备接收机观测到相干功率增益增加6dB。因此,如果没有应用归一化,图1绘图(b)双天线实例中的主瓣最大值理论上将是绘图(a) 单天线实例中的主瓣最大值的两倍。这个6dB相干增益改善可被视为由于使用两个空间分离的天线阵元,与单天线发射相比在目标设备接收机上观测到的波束赋形 增益改善。实际上,在两个天线阵元中的每个上发射的符号功率电平都可能降低3dB,达到初始单天线符号功率电平的一半,保持与单天线配置相同的总发射机功 率。虽然如此,这仍会导致在目标设备接收机上观测到波束赋形与单天线发射相比有3dB的增益。

使用多天线波束赋形发射,由于结合了波束赋形选择性、干扰管理和相干信号增益等多种优势,对于现代无线通信系统非常有吸引力。

图2:波束赋形术语

我们总结了一些重要的方面和术语,用于描述图2中的波束赋形发射:

* 主瓣:主要的最大发射功率瓣,通常指向目标设备或发射路径(该发射路径将通过在无线传播信道中进行反射到达目标设备)。

* 旁瓣:次要的功率发射瓣,有可能对服务小区或邻近小区中的其他用户设备产生多余的干扰。

* 功率零点:发射波束方向图中功率最小的位置,系统可以选择使用和控制该位置,以减少对服务小区或邻近小区中设备的干扰。

* 主波瓣宽度(Φ):主瓣发射选择性,在主瓣两个 3 dB 点上方位角宽度的测量结果。

* 主瓣至旁瓣的电平:预期主瓣发射功率相对于多余旁瓣发射功率的选择性功率差。

在现代无线蜂窝通信系统中,一个最大的挑战是蜂窝小区边缘性能。这是波束赋形技术在提供 LTE 业务方面能够发挥关键作用的主要原因。图3显示了两个实际的情景示例,它们均利用了波束赋形的先进特性以改善现代蜂窝无线通信系统中的性能。

图3(a)为两个相邻的蜂窝小区,每个蜂窝小区都与位于两个蜂窝小区之间边界上的单独用户设备进行通信。此图显示,eNB1正在与目标设备UE1通 信,eNB1发射使用波束赋形来最大限度提高 UE1方位方向中的信号功率。同时,我们还可看到,eNB1正尝试通过控制UE2方向中的功率零点位置,最大限度地减少对UE2的干扰。同样,eNB2正 使用波束赋形最大限度提高其在UE2方向上的发射接收率,同时减少对UE1的干扰。在此情景中,使用波束赋形显然能够为蜂窝小区边缘用户提供非常大的性能 改善。必要时,可以使用波束赋形增益来提高蜂窝小区覆盖率。

图3(a):用于蜂窝小区边缘性能改善的波束赋形。

图3(b):用于使用 MU-MIMO 进行蜂窝小区容量改善的波束赋形

图3(b)描述了与两个空间分离的设备(UE3和UE4)同时进行的单小区(eNB3)通信。由于可以独立地对每个空间多路复用传输层应用不同的波束赋 形加权值,所以可以结合使用空分多址(SDMA) 和 多用户MIMO(MU-MIMO)传输,提供经过改善的小区容量。

图4显示了两种不同的波束赋形实施技术。图4(a)中的实例是固定传统开关波束赋形器,其中包括一个8端口Butler矩阵波形赋形网络。这个网络实施由不同的可选择固定时间或相位时延路径矩阵使用90°混合耦合器和相移器组合实施而成。

产生的固定发射波束数量等于用于构成 Butler 矩阵网络的天线阵元N的数量。(示例使用了8个天线,产生了8条可选择的波束。)这有时也称为“波束网格”的波束赋形网络,支持选择任何单独的或组合的N个固定发射波束,以便最大限度提高设备接收机的SINR。

在无线网络中,最佳的eNB下行链路发射波束选择主要取决于对蜂窝小区中UE位置的了解。这种了解实际上可通过测量eNB接收天线阵列上的上行链路信号到达角(AoA)直接获得,也可从上行链路控制信道质量反馈信息间接推导得出。

图4:(a)固定传统开关波束赋形器(左),(b)自适应波束赋形器(右)

为了进行对比,图4(b)显示了一个自适应波束赋形器实例。顾名思义,自适应波束赋形器能够不断地进行自适应和重新计算所应用的最佳发射波束赋形复数加 权值,从而最好地匹配信道条件。因为自适应波束赋形器加权值不是固定的,所以它不仅能够优化目标 UE 上的接收SINR,还能更好地使选择性和功率零点定位进行自适应,最大限度减少对其他用户的干扰。

在无线网络中,eNB通常会通过直 接测量在eNB接收机阵列上观测到的已接收上行链路参考信号来估算最佳加权值,随后可根据这一信息计算上行链路到达角(AoA),并分解信道特征矩阵。如 果是在频分双工(FDD)系统中,下行链路和上行链路使用不同的射频载波频率,那么所施加的波束赋形发射复数加权值将主要取决于测得或推导的目标UE AoA信息,以及蜂窝小区中任何其他UE的相关信息。上行链路上的UE所报告的信道反馈信息也可为加权值估算提供帮助。

如果是在时分 双工(TDD)系统中,由于下行链路和上行链路共享相同的射频载波频率,所以可以假定信道互易性。因此,TDD系统中的波束赋形可能比FDD系统更出色。 所选出的波束赋形发射复数加权值可以与从eNB接收信号推导出的结果一样,最好地匹配分解后的信道特征矩阵向量。这些匹配信道的波束赋形加权值可帮助优化 目标UE接收机上观测到的SINR。eNB不依赖于上行链路上的用户设备所提供的信道反馈信息,尽管在实际上,eNB波束赋形加权值估算过程中仍可能会使 用这些信息。

LTE中的波束赋形

LTE定义了多种可支持波束赋形的下行链路发射模式。特别受关注的是发射模式7、8和9。3GPP 第8版推出了支持单层波束赋形的TM7。第9版增加了支持双层波束赋形的TM8,而第10版增加了TM9,它可以支持多达8层发射。

图5显示了在TD-LTE蜂窝网络中使用的典型eN射频天线配置。该网络可支持TM7、TM8和 TM9 MIM波束赋形模式。

图5:用于TD-LTE TM7、TM8和TM9的典型8天线配置

此例为一个8阵元物理天线,采用两组天线单元配置。两组天线单元彼此以90?正交交叉极化。天线组0包括天线单元1~4,以+45?进行极化。天线组1包括天线单元5~8,以-45?进行极化。

给定组内的每个天线阵元都是空间分离的,间距大约为半个射频载波波长。这样可以使天线组中的天线阵元高度相关,对于相干波束赋形非常有利。由于两个天线 组彼此之间是交叉极化的,它们之间的相关度很低,所以有利于空间多路复用。因此,典型的TD-LTE eNB射频天线物理配置可同时满足MIMO空间多路复用和相干波束赋形这两个合理但又矛盾的关联要求。

典型的TD-LTE eNB波束赋形测试系统配置

图6:典型的TD-LTE波束赋形测试系统配置

波束赋形的主要测试挑战是需要验证和显示物理射频天线阵列的波束赋形信号性能,以便对以下指标进行验证:1、eNB 射频天线校准精度;2、基带编码波束赋形加权算法正确性;3、射频天线处的MIMO信号和双层EVM。

图6中的测试系统使用Agilent N7109A多通道信号分析仪和支持TD-LTE测量的89600 VSA软件。多通道信号分析仪可以支持8个相位相干射频测量信道,并可与适合的射频分离器和衰减器一起轻松集成到典型的TD-LTE基站测试装置中。系统 校准是进行准确测量的关键。校正向导程序可以引导用户完成系统校准过程,提示用户将信号分析仪通道1测量电缆连接到双路校准分离器(图6中用虚线标出的注 入点处)的第一个输出端口。所有交叉信道表征测量都将以通道1为参考。随后,校正向导程序提示用户将剩下的通道2~8测量电缆(位于虚线上)逐次连接到双 路校准分离器的第二个输出端口,每次连接一条电缆。通过这种方式,校正向导程序能够表征所需要的交叉信道校正,对信号分析仪的波束赋形测量进行补偿,消除 测量电缆、连接器、分离器和衰减器中固有的所有失配效应,从而使用户可以在射频天线输出端看到天线赋形性能的直接、经过校正的测量结果。不过,对射频电缆 和连接器给测试系统带来的幅度和相位变化进行校准固然重要,但也不能过分夸大。

如图7所示,首先使用 VSA 软件和多通道信号分析仪显示从全部8个天线单元进行的时间同步射频信号捕获。用户可以快速识别基础的射频功率或定时性能差错,而后再执行更高级的解调测量。

图7:8天线发射信号的时间同步捕获

VSA 软件TD-LTE测量应用程序提供了广泛的解调结果,用于验证下行链路MIMO波束赋形的信号。这些包括IQ星座图、EVM结果指标、探测到的资源分配、特定用户的RS加权值、特定小区的 RS加权值和减损值,以及特定用户和公共广播天线波束方向图。

如图8中迹线A和L所示,解调后的IQ星座图按照空间多路复用层进行显示,并可快速显示信号调制质量的正确性。

图8:星座图帧汇总和探测到的资源分配

图8迹线D中显示的帧汇总提供了访问各个信道和信号类型相关EVM和功率指标的途径。它还提供了用于所有信道类型结果的颜色键,该颜色键可在整个VSA迹线中重复使用。

图8迹线B中的探测分配结果显示了每个特定用户发射的资源块分配,以及公共控制信道使用的资源分配。

图9中的表格显示了对8个天线单元中的每1个进行测量所得到的特定UE RS加权值。加权值可以同时从幅度和相位方面进行测试,最多可细化到每个用户发射相关的单个资源块分配。测量应用软件还可提供每个空间多路复用层的单独特 定用户RS加权值迹线。小区RS映射提供了图中的蓝色曲线。

图9:特定UE RS加权值和小区RS映射

总结

与现代无线蜂窝通信系统有关的性能问题都是最具挑战性的问题。在此领域中,用户设备收发信 号的质量会受到噪声最严重的影响以及最大程度的小区间干扰。使用多天线波束赋形发射技术可以发挥关键的改善作用,尤其是对TD-LTE网络而言,因为在该 网络中上下行链路频率是相同的,可以假设信道互易。波束赋形选择性、干扰管理和相干信号增益等多种优势合为一体,可在整个小区内以可接受的性能水平提供重 要业务,有助于确保更一致的最终用户体验。

从eNB开发的角度来看,多天线波束赋形发射的使用带来了一些特殊的测试挑战,包括需要验 证用于生成波束赋形加权值的eNB基带接收/发射算法是否正确实施,以及精确验证射频天线上观测的eNB校准性能。在对波束赋形发射系统进行测试时,必须 对使用的物理测量配置装置进行细心校正。另外,由于波束赋形结合了空间多路复用技术,所以还需要对在射频天线处观测到的每个MIMO层的EVM性能进行验 证。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭