当前位置:首页 > 通信技术 > 通信技术
[导读] 0 引言我国地面数字电视标准要采用自主研发的DTMB/TDS-OFDM频、时域处理技术,其支持高、标清电视的不同制式,支持室内、移动、便携接收等三种接收方式,支持单频网和多频网两种组网模式,可根据应用业务的特性和组

 0 引言

我国地面数字电视标准要采用自主研发的DTMB/TDS-OFDM频、时域处理技术,其支持高、标清电视的不同制式,支持室内、移动、便携接收等三种接收方式,支持单频网和多频网两种组网模式,可根据应用业务的特性和组网环境选择不同的传输模式和参数。

地面数字电视射频信号的信道功率是衡量网络质量的重要测量指标,其大小直接决定信号的覆盖范围及某接收点是否能够正常接收。本文介绍了一种测量地面数字电视射频信号功率的检测器,此检测器能够检测数字信号的平均功率,真实反映信号的信道功率大小。

1 模拟、数字电视信道功率区别

模拟电视广播,用峰值功率电平表征频道信号的强弱。测量模拟电视发射机输出信号功率电平时,使用频谱仪对信号同步脉冲的峰值电平进行测量。因为这里集中了信号在频道内的主要能量(超过98%),所以可以认为对载波同步脉冲的测量可以代表信号在测量频道内的电平值。

数字电视广播用信道功率表征频道信号的功率强弱。数字电视调制信号类似噪声,信号在调制到射频载波前被进行了随机化处理。由于数字信号以噪声形式出现,它更像随机加入到频域测试设备中的一组组脉冲,所以采用信道平均功率判断信号强弱。

数字电视信号有较高的峰均比,如表1所示。如果测量中仍测其峰值功率电平,则测的的数据会与信道平均功率有较大误差。因此,数字电视信号的测量应测其平均功率。

2 功率检测器系统总体设计

数字电视射频信号功率检测器主要由3个部分组成:带通滤波器、RF功率检测模块和系统控制与显示模块。其框图如图1所示。

数字电视发射机功率检测器用ARM S3C4480X芯片作为其核心控制器,内部的宽带滤波器用微带线滤波器实现,RF功率检测用专业的功率检测芯片AD8362实现,模数转换用双通道、12位高速ADC芯片实现,显示用128×64像素点单色LCD显示器实现。

框图中共有2组带通滤波器+功率检测模块组合,分别用来检测一个频道的RF信号入、反射功率大小。若系统需要同时检测多个频道的RF入、反射功率,则可以增加带通滤波器+功率检测模块组合及ADC模块数量。

耦合而来的RF信号先进入数字电视射频信号功率检测器中的带通滤波器(UHF波段特定中心频率、带宽8MHz)。经过滤波后,某一特定频道的RF信号再送入功率检测模块,检测后输出信号强度模拟电平,该功率检测模块可以检测数字信号的真有效值功率,检测动态范围高达60d B。ADC芯片将送来的RF功率强度模拟检测电平转换为数字信号输出,该ADC芯片具有2个12位的高速逐次逼近型ADC模块,采样速率高达2MSP S。ARM控制器控制整个功率检测器的功率检测及显示功能,ARM控制器接收ADC送来的数字信号,经运算处理后,最终将结果显示在LCD显示模块上,ARM控制器采用16/32位ARM7TDMI内核,主频66MHz,集成8KB高速缓冲器、外部存储器控制器、LCD控制器等模块。

3 硬件设计

3.1 输入保护电路

在整个功率检测器的输入端,增加了输入功率过载保护电路。当输入的RF信号功率过大时,该保护电路将会自动限制输入信号的功率,达到保护后级检测电路不受损伤的目的。输入过载保护电路由肖特基增强型PIN限幅器、射频变压器组成。当输入RF功率低于门限电平时,信号能够正常通过保护电路;当输入RF功率达到或超过门限电平时,保护电路会自动将输入功率限制在最大允许功率电平上,保证后级电路正常工作。该保护电路具有宽工作频率200~1400MHz,低功率限制电平约6.05dBm,能够满足广播电视频段应用的需求。

肖特基增强型PIN限幅器采用ASML-5829,限幅器中有一PIN二极管和一肖特基二极管,两二极管如图反向并联在输入电路上,当RF信号低于限制门限,肖特基二极管上电流很小,导致PIN二极管的结电阻很大,RF信号便能无损耗地向后级传输;当RF信号增大到限制门限,肖特基二极管电流升高,导致PIN二极管结电阻减小,大部分RF信号入射功率经PIN二极管被反射回输入源。射频变压器采用TC4-14+,次级初级绕阻比为4,因此变压器即能起到放大信号的作用,又能起到阻抗匹配的作用。输入过载保护电路在整个工作频段内,插损最大约-2.8dB,回波损耗最小约-18dB。

3.2 功率检测

3.2.1 均方根检波器AD8362

AD8362是一个真有效值功率检测器,其检测输出的线性直流电压正比于输入信号功率大小,输出与输入信号的峰均比无关,具有60dB测量范围。它被用于各种不同高频通信系统和对信号功率要求准确相应的仪器中。该芯片简单易用,只要单5V电源供电和一些电容。它可以在任意低频至2.7GHz频率中工作,可以接受从1mV~1V有效值的信号输入。被测信号的峰值因数可以高达6,超过了对CDMA信号精确测量的要求。AD8362能够测量射频信号的有效值功率,为理想的数字电视射频信号功率检测器。

AD8362具有以下特性:1)完全精准测量/控制系统;2)精准的RMS转直流(50Hz~2.7GHz);3)输入动态范围大于60dB(50 Ω下,-52~8dBm):4)独立的波形和调制(GSM/CDMA/TDMA等);5)线性的分贝输出(50mV/dB);6)0.5dB偏差;7)不同温度和供电下功能稳定(4.5~5V在24mA,-40~+85℃);8)待机状态1.3mW。

AD8362既能用于功放线性控制,也能用于射频功率检测。当用于功率检测时,其VOUT脚与VSET脚应直连,此时输出是正比于输入rms对数值,斜率50mV/dB。当用于功放线性控制时,VOUT脚与VSET脚独立,功放通过AD8362的VOUT输出来改变自身的增益,达到功率输出线性的目的。

3.2.2 功率检测电路

AD8362提供测量模式和控制模式两种工作模式。在控制模式下,AD8362可监视可变增益功放的输出,并通过设定VSET脚上的电压,控制调节功放增益,使功放输出到一个理想的目标值。当输入大于VSET脚设定值,VOUT置逻辑高电平,当输入小于VSET脚设定值,VOUT置逻辑低电平。在测量模式下,AD8362仅检测RF的功率大小,VSET脚与VOUT脚短路。本设计采用测量工作模式,检测电路如图3所示。

AD8362的输入可以是差分输入或单端输入,如果要配置为差分输入模式,输入电路前还需增加BALUN(非平衡转平衡转换器),这里我们使用单端输入模式。VOUT经过运放放大后送出检测电压值PWR_DET。当VSET脚与VOUT脚短路连接时,输出电压与输入信号电平呈线性对数关系(斜率50mV/dB),对于输入信号为-60dBm(截距)时,VOUT输出为0V。输出电压可用如下公式表示:

VOUT=(PIN-PZ)×50mV

PIN为输入信号的功率,PZ(截距)为输出为0V时的输入信号功率,两者单位均为dBm。通常PZ为-60dBm。

本设计中,VSET脚与VOUT脚并未直接短路连接,而是通过一个电阻相连,且在VSET脚上加了一个配置电压(截距重定位电压)。这样,便可以增加输出电压公式中的斜率,以便更适应特定的功率检测环境。当然,这样的电路连接也会降低检测的动态范围。

由于VOUT、VSET连接改变,斜率有所变化。另一方面,由于阻抗失配和衰减等因素,测量可能会有误差,因此,需要对测量电路的计算公式做校正,重新计算公式中的斜率(SLOPE)和截距(INTERCEPT)。校正方法是施加连个接近AD8362线性输入范围端点的已知信号电平,然后测量输出电压。根据AD8362线性范围选择两个输入信号电平为PIN1=-60dBm,PIN2=-30dBm,并分别测得电路输出电平为VOUT1和VOUT2。则可以通过以下公式计算斜率和截距:

检波器输出给后级的双路,12BIT ADC处理,将检测直流电压变为数字信号经过SPI接口送至MCU主控制器。

3.3 系统控制

整个功率检测器选用三星公司的16/32位RISC处理器S3C4480X(66MHz)作为系统控制器。S3C44BOX采用ARM7TDMI内核,0.25 μm工艺的CMOS标准宏单元和存储编译器,为手持设备和一般类型的应用提供了高性价比和高性能的微控制器解决方案。该处理器提供了丰富的内置部件:8KBcache、内部SRAM、LCD控制器、71个通用I/O接口、RTC、10位ADC、自动握手的2通道UART、I2C总线接口等。系统控制器执行功率检测程序,并控制检测电路对射频信号功率的采集,将功率检测结果显示在LCD模块上。LCD模块选用128×64像素的LCD屏,共能显示4行中英文字符。且通过软件控制,可以实现定时刷屏,这样就能实时显示射频信号功率的检测结果了。

4 软件设计

功率检测软件执行的流程如图4所示。系统先初始化功率检测模块、ADC模块、LCD模块等,使所有模块进入正常工作状态。MCU采集射频信号的入、反射功率检测数据,对数据进行判断是否超过测量线性范围,如超过,则显示超过测量范围,此时可按“重新检测”按钮使系统重新检测功率;如未超过,则由采集数据计算功率值的大小。系统对功率值继续判断其是否在设定门限范围内,如超过,则显示异常功率值大小及功率异常报警,此时仍可按“重新检测”按钮使系统重新检测功率;如未超过,则显示正常的功率值大小。如果检测的功率值正常,

系统默认是按周期循环检测,使维护人员能够实时查看入、反射功率状态,同时也可按“停止循环检测”按钮随时停止循环检测程序,使显示保持当前状态。

5 小结

本设计的数字电视射频信号功率检测器能够准确实时测量地面数字电视射频信号功率大小,并具有功率异常报警功能,为维护人员提供有效监测手段,提高维护效率,保障安全播出。本检测器检测准确、结构简单、运行稳定,具有一定的应用前景。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭