当前位置:首页 > 测试测量 > 测试测量
[导读]以TLC4502和MAX111为例介绍了自校准功能模块中运算放大器和A/D转换器的工作原理及使用方法

   摘要:介绍了数据采集系统中的自校准技术,并以TLC4502和MAX111为例介绍了自校准功能模块中运算放大器和A/D转换器的工作原理及使用方法,最后给出了相应的应用实例。

    关键词:自校准技术;A/D转换;TLC4502;MAX111

1 引言

零点温度漂移和时间漂移往往会对微弱信号的放大及A/D转换过程产生重要影响,从而引起数据采集精度的降低。因此,为了提高精度,多采用高精度的基准源、匹配电阻以及低漂移运算放大器,但这样同时也会使产品成本升高,且线路复杂,功耗高。本文讨论的自校准技术能很好地解决时漂和温漂问题,并进一步提高A/D转换的精度,而且硬件简单,因此适用范围很广。

2 数据采集系统的一般组成

数据采集系统一般由模拟信号输入、信号放大器、A/D转换器以及MCU组成,如图1所示。该系统的自校准精度主要取决于信号放大器和A/D转换器。

2.1 校准信号放大器

信号放大器的放大倍数准确与否以及时漂、温漂等问题都会严重影响数据采集的精度,因而对信号放大器进行校准是十分必要的。现在已经有一些带自校准功能的信号放大器。选用这些器件无疑会大大简化系统设计。下面以美国TI公司的自校准信号放大器TLC4502为例进行说明。TLC4502内有两个自校准运放通道,其通道的原理图如图2所示。

通电后,上电复位电路开始工作,通过控制逻辑电路启动自校准过程。首先激活RC振荡器以提供逐次逼近算法的时钟信号,同时断开K1、K4,并接通K2、K3。此时,运算放大器输入端短路,输出为失调电压,该电压经K3到片内并通过A/D转换器转换后,存入寄存器SAR内,然后再通过片内D/A转换器转换后送到运算放大器内进行失调对消。经过若干个时钟周期后,失调电压逐次逼近零点,此时控制逻辑电路自动断开K2和K3,并接通K1和K4,校准过程即告结束。经校准后,运算放大器的失调电压的误差为零,因此,就可以像一般的运算放大器一样使用了。

只要不断电,校准后的失调调零信息就可一直保存在逐次逼近寄存器SAR中。为了进一步降低功耗及防止宽带噪声引起的干扰,校准完成后,放大器芯片会自动关闭片内RC振荡器。整个校准过程约 300ms。当TLC4502应用在长期不间断信号采集的场合时,可通过CPU来控制其定期切断,然后再接通运算放大器电源进行自校准,这样可消除时间漂移引起的误差。

    2.2 A/D的自校准原理

下面以两通道A/D转换器件为例来对自校准过程进行说明。自校准过程可分为四步(见图3):

(1) A/D调零:A/D转换器的两个输入端短接后接到参考电压负端。

(2) A/D增益校准:A/D转换器的两个输入端分别接至参考电压的正负端。

(3) 通道1(或2)调零校准:A/D转换器的两个输入端短接后接输入信号的负端。

(4) 通道1(或2)正常进行A/D转换:A/D转换器的两个输入端分别接至输入信号的正负端。

    其实前三步是完成自校准过程,最后一步是由自校准过程转到正常工作状态。对于普通的A/D转换器件,要完成自校准过程需要扩展外围电路,图3中的S1、S2、S3的功能可以由模拟开关来实现。不过,采用带自校准功能模块的A/D转换器无疑将更方便、更简洁。美国MAXIM公司的MAX110/111就是采用了内部自动校准技术的A/D转换器件。下面就对MAX111的使用进行介绍。

MAX111片内有2个模拟量输入通道,A/D转换的分辨率可达到14位二进制数 ?并可用命令字设定为14位、13位或12位。该芯片的自校准功能是通过 3个校准命令字分别对片内A/D转换器进行调零校准、对通道增益参照基准电压进行校准、对2个模拟通道调零校准来实现的,通过这三方面的校准可消除由时漂和温漂引起的误差,因而可以达到很高的精度。

MAX111的命令字字长为16位 ?由CPU按SPI或QSPI串行通信协议传送给MAX111芯片,命令字格式见表1。表1中,CONV4、CONV3、CONV2 、CONV1为转换时间控制位;DV4、DV2用于设定对时钟信号的分频数,以把时钟频率分频为超采样频率;PDX=1时,关闭RC振荡器;PD=1时,关闭模拟电路部分电源,芯片处于省电模式。NO-OP、CHS、CAL、NUL四位用于校准和A/D转换, 这四位逻辑电平与MAX111内部操作的对应关系如表2所列。

表1 MAX111的命令字格式

15 14 13 12 11 10 9 8
NO-OP NU NU CONV4 CONV3 CONV2 CONV1 DV4
7 6 5 4 3 2 1 0
DV2 NU NU CHS CAL NUL PDX PD

表2 控制字与内部功能的对应关系表

CAL NUL CHS NO-OP MAX111内部操作
0 0 0 1 选择通道1作为A/D转换输入(见图3d)
0 0 1 1 选择通道2作为A/D转换输入(见图3d)
0 1 0 1 通道1调零校准(见图3c)
0 1 1 1 通道2调零校准(见图3c)
1 1   1 A/D调零(见图3a)
1 0   1 A/D增益校准(见图3b)
      0 禁止A/D转换

MAX111的自校准过程要经过三步,其方法是向控制寄存器送控制字。

第一步:D15~D0=1000,000X,X00X,1100,即CAL=1,NUL=1,通过把内部ADC输入端短接至REF-可完成一次偏置校正变换?将其变换结果存入零寄存器之后,D12~D9可重新选择。

第二步:D15~D0=1000?000X?X00X?1000,即CAL=1,NUL=0,把零寄存器的内部作为起始值可完成一次增益校准变换,其结果存入校准寄存器。

第三步:D15~D0=1000,000X,XX00,X100,即CAL=0,NUL=1,把内部ADC输入按照选择通道完成一次零偏置变换。

3 应用电路举例

根据前面的介绍和分析,笔者以51单片机作为CPU,利用TLC4502和MAX111设计出一个可自校准的数据采集系统。其原理图如图4所示。

4 结束语

采用自校准技术的数据采集系统能够很好地克服由温漂、时漂引起的误差,从而大大提高数据采集的精度,因此,该方法特别适合需要实时数据采集的应用场合。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭