当前位置:首页 > 测试测量 > 测试测量
[导读]本文介绍一种产生闭合或断开继电器的信号、使接触在铃声发生器的铃声信号处于零电位时合或开的方法。

    继电器用于将铃声发生器与电话线连接或断开。但如果两点处于不同电位,则会在连接瞬间出现高瞬态电流,而这会导致接触产生电弧和点蚀,致使继电器寿命由于接触故障而缩短。

    鉴于以上原因,最好能在两点电位差为零的瞬间合或开。但根据现代电子学原理,继电器从开到合,或从合到开的转换需要一段相对较长的时间。本文介绍一种产生闭合或断开继电器的信号、使接触在铃声发生器的铃声信号处于零电位时合或开的方法。同时介绍一种可产生用于从负和正向进行零交叉的脉冲、并以一个固定时间或继电器工作所需时间来预先进行零交叉的简单电路。

 

 

 

 

 

 


图1  简单零交叉检波器电路

 

 

 

 

 

 


图2  在电容两端跨接一个电阻

 

 

 

 

 

 

 


图3  角度与电阻关系曲线

 

 

 

 

 

 


图4  最终电路

 

 

 

 

 


图5 预零交叉检波器与脉冲发生器电原理图

    在铃声发生器中,继电器的有限工作时间仅占输入铃声电压周期的一小部分。如果继电器在所需电压上开/关,则必须让脉冲在铃声信号所需电压之前的一个给定时间开始。

    电路原理非常简单。通过将一个电容和一个电阻与信号端及接地端串联,即可让通过该串联组合的电流超前于电压,所产生的相移为两个串联元件的函数。例如一个串联R/C电路,其中R为60k,C为200nF,即可让电流超前电压33.5°,承载铃声电压的正弦波带有直流偏移,从正向交叉的角度和斜率与从负向交叉的角度和斜率不同,且均不在铃声电压正弦波的0- 180°。

    由于电容隔直,因此电流波形在零电流上对称,而具有-48V偏移的电压波形则在-48V电平上对称,但直流偏移意味着它对地不对称。

    图1给出了一种简单的零电流交叉检波器电路,用这种检波器及超前于电压的电流,即可在电压过零点之前产生脉冲。

    如图1所示,对于从R2流入D2的电流,D2正极上的电压(VD2)高于二极管压降(5V)。随着电流从D3流入R2,它再变成低于地电位的二极管压降。这种转换意味着电流极性改变。但是电流仍相对于零对称。这将导致两次转换时的电流交叉点和电压交叉点之间的时间差不同。电压直流偏移越大,此时间差也就越大。这种不同可通过增加一个跨接在电容C1两端的电阻来部分补偿。

    通过在电容C1两端跨接一个电阻(见图2),给电流增加一个类似于电压偏移的直流分量,即可获得一个非对称的零电流交叉。

    利用这种由所增加电阻带给电流波形的相移和直流偏移,可将超前系数编程至电流中,以使电流在两次转换时以同样的时间在先于电压零交叉时过零点。继电器要求线圈在继电器闭合前大约2.5ms时被激励。

    利用Mathcad并解阻抗反相角(其中R2允许改变)方程:

    可从图3曲线得出R2为41.7k。

    但是,下斜和上斜零交叉仍不是同样的预定时间,两者都不满足要求,因为上、下斜电流零交叉与电压零交叉之间的时间差均大于所需的时间。

    通过将R2增加至60 k,上斜时间差可满足2.5ms的要求,但下斜时间差则只有大约1ms。在剩下的1.5 ms内,电压将下降20V,从而在继电器开或合时出现极大的电压。

    如果在电容到地之间增加一个电阻及一个二极管(图4中D4和R4),则它只会影响电流的一个极性。以图4所示配置,正电流的时间改变为新元件所影响的唯一参数。
利用此完整电路及零电流检波器,即可产生一个具有提前于电压零交叉一个预定时间的脉冲。在该点上,继电器在零电压交叉时间上被触发闭合。

    这种变化允许使用如图5所示的电路来检测正、负预交叉点。此外,这种脉冲还允许该电路触发继电器,以使继电器在零电压交叉时闭合。这样可以实现更长的接触寿命及更高的产品可靠性。

    该电路采用可产生铃声信号的UCC3570型铃声发生控制器来构建和测试。
测试结果显示,电流转换导致在实际零电压交叉前大约2.5 ms处产生触发脉冲。

结语
    该电路可提供对电压波形零电压交叉的可编程预测。通过预测零电压交叉何时发生以及提前启动继电器来考虑工作时间,可使继电器在零电压交叉时闭合。这能保护继电器接触免受电弧的损坏,从而延长继电器使用寿命,减少维修成本以及提高整个设备的平均故障间隔时间 (MTBF)。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭