当前位置:首页 > 测试测量 > 测试测量
[导读]1 引 言 为了使之具有高速、灵活的优点,本文采用Atelra公司的可编程芯片FPGA设计了一款周期和输出个数可变的脉冲发生器。经过板级调试获得良好的运行效果。 2 总体设计思路 脉冲的周期由高电平

1 引 言
        为了使之具有高速、灵活的优点,本文采用Atelra公司的可编程芯片FPGA设计了一款周期和输出个数可变的脉冲发生器。经过板级调试获得良好的运行效果。
        2 总体设计思路
        脉冲的周期由高电平持续时间与低电平持续时间共同构成,为了改变周期,采用两个计数器来分别控制高电平持续时间和低电平持续时间。计数器采用可并行加载初始值的N位减法计数器。设定:当要求的高电平时间以初始值加载到第一个减法器中后,减法器开始减计数,计数到零时自动停止,同时启动第二个记录低电平持续时间的计数器计时。当第二个减法计数器也减计到零时,计数器自动停止。
        这样就完成一个脉冲的输出,而这个脉冲的周期控制完全可以在计数器的初始值中进行有效的设定.以达到脉冲周期可调的目的。为了控制脉冲个数的输出,在脉冲输出通道上设计一个数量控制计数器,对脉冲个数进行计数,当计到要求输出的个数时.完成输出并给出一个done信号作为该模块工作完成的标志信号。封装好的脉冲发生器设计框图如图l所示。

        引脚信号说明:
start信号:启动信号。
reset,信号:系统复位信号。
clock信号:系统时钟信号。
high信号:高电平持续时间初值。
low信号:低电平持续时间初值。
num信号:个数控制寄存器初始值。
output信号:脉冲输出信号。初始化时为低。
done信号:脉冲输出完的标志信号。
       3 高低电平计时器设计
        3.1 设计方法
        为了产生所需要时间的高电平,可以利用一个可预置数的减法计数器来达到目的,计数器设计分为两个部分,一部分是可预置数的自控制减法计数器:另一部分是减法计数器工作完成后的检测系统,检测到计数器工作完成后输出一个时钟周期宽的脉冲作为该计数器工作完成信号,并可作为下一个计数器工作的启动信号。原理框图如图2所示。

       3.2 工作原理
       首先.外部的复位信号reset给出一个时钟周期宽的脉冲,复位内部各个信号及触发器。
然后,在下一个有效时钟时刻,外部start信号给出一个时钟周期宽度的脉冲,用来启动计数器的工作。在设计中,当start信号有效时(设计为高有效),外部数据high加载到Q,当Q不为零时,输出信号pulse将跳变为高电平,当Q减到零的时候,pulse信号再跳变回低电平。这个脉冲信号的后沿将被后面的由两个D触发器构成的检测单元捕获,并在pulse信号的下降沿后产生一个时钟周期宽的脉冲,定义为done信号,表示该信号完成输出。
      低电平计时器的设计与高电平计时器完全一样。
      3.3 时序仿真
      在QuartusⅡ4.1开发平台上模拟该模块两个输出信号,时序仿真如图3所示。

       从图中可以看出,done信号在pulse信号输出完成后输出一个时钟周期宽度。把这个完成信号done加到下一级类似的减法计数器的start信号上。将会启动下一级计数器的工作。如果将下一级的完成信号done加载给本级的start信号。将会重启一个脉冲的生成。如此将会自动循环以达到不间断输出一定周期脉冲的目的。
       4 数量控制计数器设计
       4.1 设计方法
        数量控制计数器设计与高低电平计数器类似.不同之处在于,减法计数器的时钟输入端接脉冲的输出信号,当要求输出脉冲的个数到达时,输出一个门控信号door,后面的两个D触发器仍然用来捕获门控信号door的后沿。一旦输出个数到达,done信号立即输出一个时钟周期宽度的脉冲作为标志。具体设计框图如图4所示。

     4.2 时序仿真
        在QuartusⅡ4.1开发平台上软仿真,把脉冲发生器中产生的每个脉冲的start信号作为数量控制器的输入信号,仿真结果如图5所示。

        每次输出任务完成后。由总体模块输出一个OV信号标志该批次任务结束。OV信号可再次加载到总的reset信号上,即该批次输出完成可复位进入下一批次任务的输出。图5中的door信号出现了很窄的毛刺,这是由于内部计数器的翻转不同步造成的。加同步电路可以消除,但会影响电路的工作频率。由于毛刺很窄,对整个电路工作无任何影响。所以,该模块设计中并未处理。
        5 内部信号连接及工作方式
        根据各个模块的功能和逻辑关系,由高电平计时器、低电平计时器和数量控制计数器可以搭建整个周期脉冲发生器.其内部电路按照图6的方式连接。

        首先,在时钟信号上升沿给出一个时钟周期宽度的reset信号以复位整个电路的触发器和各个输出信号。当一个启动信号start在时钟的上升沿被检测到时,高电平开始计时,计时长度等于high数值与时钟周期之积。当计时到达时,高电平计时器停止工作,高电平计时器输出一个完成信号,该信号接在低电平计时器的start信号脚上,以启动低电平计时器,低电平计时器计时完成时,低电平计时器停止工作,并输出一个完成信号,该信号通过或门接在高电平计时器的start信号脚,再次启动高电平计时器,开始第二个脉冲高电平的输出。由于低电平计时器的完成信号也连接在数量控制计数器的start引脚上.所以,与此同时,数量控制计数器开始对其输入脉冲s_input进行数量监测。
         在脉冲输出数量未达到预定个数(数量控制计数器中的初始值)时,门控信号door一直输出"高",以允许脉冲通过。一旦脉冲输出的数量达到预定个数时,门控信号door输出变为"低",关闭输出通道,并输出一个任务完成的标志信号done。done又通过或门连接在全局复位信号reset上,所以,系统完成后即可复位到原状以等待下一次启动信号来临。
周期脉冲发生器模块整体时序仿真如图7所示。

        图7模拟了两路脉冲的输出,第一路输出两个脉冲,第二路输出一个脉冲,当两路脉冲都输出完成时,系统恢复到初始状态。而当start信号再次给出一个启动脉冲后,将再执行一次任务。
      6 结束语
        从模拟结果看出,本文给出的设计完全可以达到设计要求。由于FPGA的运行速度最高可以达到100 MHz量级,输出的脉冲调节步长和最小宽度都可以到ns量级。在此基础上,笔者设计了一个多路可调脉冲周期的时序电路,并运用在团簇粒子的核物理实验中。收到满意效果。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭