地质雷达在水利工程质量检测中的应用
扫描二维码
随时随地手机看文章
1 前言
地质雷达作为近十余年来
既衰减系数与电导率(σ)及磁导率(μ)的平方根成正比,与介电常数(ε)的平方根成反比。
而界面的反射系数为:
式中Z为波阻抗,其表达式为:
显然,电磁波在地层中的波阻抗值取决于地层特性参数和电磁波的频率。由此可见,电磁波的频率(ω=2πf)越高,波阻抗越大。
对于雷达波常用频率范围(25~1000MHz),一般认为σ<<ωε,因而反射系数r可简写成:
上式表明反射系数r主要取决于上下层介电常数差异。
应用雷达记录的双程反射时间可以求得目的层的深度H:
式中:t为目的层雷达波的反射时间;c为雷达波在真空中的传播速度(0.3m/ns);εr为目的层以上介质相对介电常数均值。
3 工程概况
北京市界内永定河左、右堤防于清朝乾隆年间修筑,后经数次维修和加固形成现有规模,主体为梯形,顶宽约10m,可见堤高约5~6m,堤内坡坡度为1:1.5~1:2.0,外坡相对较缓为1: 2.0~1: 2.5。
堤身为人工堆积,主要由粉细砂(中下游段)、卵砾石(上游段)组成。介质构成复杂多变,分布不均,且处于包气带中,极为干燥。
堤基为第四系全新统地层,岩性以粉细砂为主,下游段出现黑色淤泥质粘土夹层,层厚约0.7~2.0m。
地下水位埋深(自地表计):卢沟桥附近约20.0m,至下游逐渐变浅,达省/市界附近(石佛寺)一带约2.0m。
永定河卢沟桥下游至省/市界左、右堤防共划定险工段12处23段,分布在左堤约60Km和右堤约30Km范围内,其险工段内坡为浆砌石(厚约40cm——原设计标准)结合铅丝石笼构成的护砌,并于1964~1989年间营建,浆砌石护坡除可见堤身部分露出外,其余部分与铅丝石笼水平护底均埋于河滩滩地以下,一般为3.0~5.0m,外铺8.0m的铅丝石笼护底。这些险工段在历史上均有决口或抢险加固的记载。为满足北京市对永定河设计的需要,保证该堤防渡汛万无一失,故进行地球物理勘探工作,以检测堤防工程的护砌质量,便于99年6月份之前进行加固处理。
4 测试技术及资料处理
为判断险工段堤内坡护险浆砌石质量的优劣,沿内坡坡脚布置一条雷达探测剖面,并按其走向连续测试。
外业施测使用瑞典MALA地质仪器有限公司生产的RAMAC/GPR地质雷达系统,天线的中心频率为250MHz,收发天线的间距为0.6m。实测采用剖面法,且收发天线方向与测线方向平行。记录点距为0.2m,采样频率为3893MHz,单一记录迹线的采样点数为512,迭加次数为16,记录时窗为180ns,若取堤身土体的雷达波速为0.08~0.10m/ns,表层浆砌石的雷达波速为0.10~0.12m/ns,综合考虑该地层剖面特征,选取雷达波速中值为0.10m/ns,则此时该雷达系统的最小纵向分辨率为8~10cm。
雷达资料的数据处理与地震反射法勘探数据处理基本相同,主要有:①滤波及时频变换处理;②自动时变增益或控制增益处理;③多次重复测量平均处理;④速度分析及雷达合成处理等,旨在优化数据资料,突出目的体、最大限度地减少外界干扰,为进一步解释提供清晰可辨的图像。处理后的雷达剖面图和地震反射的时间剖面图相似,可依据该图进行地质解释。
5 成果分析
地质雷达资料的地质解释是地质雷达探测的目的。由数据处理后的雷达图像,全面客观地分析各种雷达波组的特征(如波形、频率、强度等),尤其是反射波的波形及强度特征,通过同相轴的追踪,确定波组的地质意义,构制地质——地球物理解释模型,依据剖面解释获得整个测区的最终成果图。
地质雷达资料反映的是地下地层的电磁特性(介电常数及电导率)的分布情况,要把地下介质的电磁特性分布转化为地质分布,必须把地质、钻探、地质雷达这三个方面的资料有机结合起来,建立测区的地质——地球物理模型,才能获得正确的地下地质模式。
雷达资料的地质解释步骤一般为:
⑴ 反射层拾取
根据勘探孔与雷达图像的对比分析,建立各种地层的反射波组特征,而识别反射波组的标志为同相性、相似性与波形特征等。
⑵ 时间剖面的解释
在充分掌握区域地质资料,了解测区所处的地质背景的基础上,研究重要波组的特征及其相互关系,掌握重要波组的地质特征,其中要重点研究特征波的同相轴的变化趋势。特征波是指强振幅、能长距离连续追踪、波形稳定的反射波。同时还应分析时间剖面上的常见特殊波(如绕射波和断面波等),解释同相轴不连续带的原因等。
图1 左堤9+638~9+721护险段坡脚雷达图像(a)和地质解释图(b)
根据上述解释原则,对雷达图像进行地质解释如下:
图1(a)为左堤9+638~9+721护险段坡脚雷达测试图像。此图由浅至深解释为:①第一同相轴(<4ns)为雷达波初始信号;②第二同相轴和第三同相轴(<12ns,层厚约0.40m)呈现出宽粗、强振幅,且连续可追踪的水平层状,该同相轴推测为浆砌石在雷达图像上的反映。尤其是第三同相轴有时出现不连续段或缺失或杂乱无章时,即可推定此处浆砌石质量差或与堤身土体分离形成架空等现象;③新人工填土:反射层位不连续,起伏变化较大,有时杂乱无章,反映该层填土不均匀,层位不稳定,时有透镜体的形式展现,该层厚度大约为2~4m;④老人工填土:反射层位连续且稳定,层内介质变化不大,反映出该层填土较均匀,已形成相对密实的地层,该层厚度大约为1~3m;⑤自然地层:即堤基持力层,反射明显,层位稳定,未见层内介质突变或不均匀的现象,反映出自然地层沉积环境较好,密实度相对较大等,此层顶面埋深大约为4~5m。
图2为左堤32+960处护险坡脚雷达图像,图中浅部解释与图1类似,主要说明的是剖面6.0~12.0m段,自0.4m以下反射层位杂乱,极不规则,连续追踪性差,出现很多的短小反射层,且浆砌石下部反射也很杂乱无章,说明此段护险下部的土体较松散,与浆砌石形成似离似亲,接触较差。而剖面12.0~15.7m段上下部位反映较均一,水平层状良好,说明此段堤身土体较密实,与浆砌石接触良好。
图3为已知浆砌石下部架空时的图像,该剖面第三反射同相轴自剖面点9.4m处断开,形成“背斜”状的强反射层,此现象延续到剖面点12.8m处,此段浆砌石与下部土体分离导致架空,其范围与已知情况吻合。
通过雷达测试成果的地质解释共圈定出73处浆砌石存在不同程度的隐患或质量较差,这些隐患的类型一般为:①浆砌石厚度较薄;②浆砌石与下部土体分离形成架空;③浆砌石胶结不良或松散;④浆砌石出现裂缝等不良现象。
护砌整体质量较差的堤段多为年久失修严重,浆砌石与下部堤身土体接触差,多形成架(悬)空状态,造成护砌断裂、塌陷等不良现象较普遍,且多具一定规模。而造成上述现象存在的原因,笔者分析后认为浆砌石面存在许多缝隙,且砂浆质量差、少浆,下部又无防渗护层,堤身土体多由粉细砂组成,经降水入渗,粉细砂局部被冲刷淘失,在砌石与堤身土体之间形成空洞,并有继续扩大发展之趋势。
该物探成果经开挖验证(见图4——开挖照片),完全符合客观实际,受到了甲方的赞誉。
6 结语
地质雷达以其高效快速、高精度在护险工程探测中能够发挥重要作用,取得了良好的应用效果,且对浅层或超浅层的工程探测中有着十分广阔的应用前景,然而地质雷达的探测深度和精度与所采用的天线频率有很大关系,天线的频率越低探测深度越大,则精度越低;而天线的频率越高,探测深度越浅,则精度越高。本次采用中心频率250MHz的天线进越高。本次采用中心频率250MHz的天线进行探测,其深度和精度均能满足此次勘察的技术要求。
图4 开挖验证结果(左堤——照片)