当前位置:首页 > 测试测量 > 测试测量
[导读]摘要 为了便于获取步态数据,采用μPD78F0547微控制器、US3LV02DQ微加速度计、nRF2401无线收发芯片等主要器件,设计了步态加速度信号无线采集装置。将该装置的一端固定于人体腰或腿等部位,按设定的采样率连续输出运

摘要 为了便于获取步态数据,采用μPD78F0547微控制器、US3LV02DQ微加速度计、nRF2401无线收发芯片等主要器件,设计了步态加速度信号无线采集装置。将该装置的一端固定于人体腰或腿等部位,按设定的采样率连续输出运动时的三维加速度数据;另一端接收数据并通过串行接口实时地传送到计算机中,从而实现大量步态数据的采集和存储。
关键词 加速度计 步态数据 无线采集 μPD78F0547 LIS3LV02DQ


引 言
    步态作为生物特征之一,在身份识别和运动分析方面都有着重要的研究意义,国内外已有许多学者投入到该热点研究中。步态研究需要以大量可靠的原始步态数据为基础,目前公开的步态数据库都基于步态图像口。然而动态环境中拍摄的图像容易受光照变化、运动目标的影子等多种因素影响,给步态特征的提取带来较大困难。Ailisto H.等人提出了一种采用加速度传感器来获取步态数据的新方法,避免了动态环境中多方面因素对捕捉图像的不利影响,降低了数据处理的难度,从而开辟了步态数据获取的新途径。但是该方法采用装有DAQl200数据采集卡的笔记本电脑采集数据,不仅成本高,而且不便于测试对象携带。
    近几年随着传感器技术的发展和制作工艺的不断改进,具有尺寸小、精度高、功耗低等优点的MEMS(Micro-Electro-MecHanical-System)加速度传感器已经进入应用领域,使得基于运动传感器的步态研究更为方便。本文介绍的步态加速度信号无线采集装置,就是采用了MEMS三轴加速度计LIS3LV02DQ、无线收发芯片nRF2401、8位微控制器μPD78F0547等主要器件而设计的。


1 硬件电路设计
    步态加速度信号无线采集装置主要由两部分构成:数据采集及无线发送模块,无线接收及数据传输模块。主要的接口电路包括微控制器与加速度计之间的CSIA0串行接口电路,与无线收发芯片之间的CSIll串行接口电路,以及UART转USB的桥接电路等。其原理如图1、图2所示。由固定于人体腰后部的数据采集及无线发送模块获取并无线发送人运动时的三维加速度数据;计算机端的无线接收及传输模块将接收到的数据通过USB串行接口传输到计算机中,作为后续数据处理的数据源。

2 控制软件设计
    数据采集及无线发送程序流程如图3所示。其中初始化包括微控制器的I/O端口初始化、串行接口初始化、中断初始化、加速度计和无线收发芯片的初始化配置。初始化完成后等待按键命令,第一次按键进入开始采集数据状态,再按一次键则停止采集数据。按键由被测试人控制。

    有关加速度计的主要程序代码如下:

   

   
    注意:
    ①当CSIA0工作在1字节通信时,如果只执行接收操作,则只能通过向串行I/O移位寄存器SIOA0写入虚拟数据才可启动通信,通信结束后产生1个中断请求信号(INTACSI),此时读取SIOA0即为所要的值。
    ②每采集完1组加速度值,必须执行语句:
    write_comm(WRITE_STATUS_REG,Ox00)通过对状态寄存器STATUS_REG清零,可以清除加速度计输出的Data—Ready信号,从而产生新的一组加速度值。
    无线接收及数据传输程序流程如图4所示。在完成初始化后进入循环监听状态。当接收到数据时,无线收发芯片nRF2401向MCU发出数据就绪信号,MCU读取数据后和计算机通过串行通信将数据以文件的形式保存到计算机中。

3 实 验
    本设计中的无线发送、接收天线采用的是PCB板上的环形线,其发射能力较弱,因此实验是在发送端和接收端处于可视范围内,并且无障碍物阻隔的条件下完成的。被测试对象将装置的数据采集及无线发送模块固定于腰后部,并且按照要求使加速度计3个轴的正方向分别指向人体侧向、垂直方向和前进方向。实验结果表明,加速度计以其采样频率范围内的任意采样率工作时,该装置均能满足采集与传输的要求。图5是加速度计工作在160Hz,被测试人平地行走时接收并保存到计算机中的时间一加速度图。

结 语
    本文所设计的步态数据无线采集装置,通过完成对特定环境下步态加速度数据的采集及存储,为进一步完成便于携带的采集装置作了有效的尝试。通过进一步改进和完善,将会成为建立原始步态加速度数据库、跟踪检测和记录人的运动状态的有效工具。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭