当前位置:首页 > 测试测量 > 测试测量
[导读]摘要:大多数现代系统中的电子器件通常采用3.3V或更低的电压供电,但有时还需提供±10V的电压驱动外部负载(工业应用中非常普遍)。尽管有些数/模转换器(DAC)能够以±10V的摆幅驱动负载,但在某些场合仍然

摘要:大多数现代系统中的电子器件通常采用3.3V或更低的电压供电,但有时还需提供±10V的电压驱动外部负载(工业应用中非常普遍)。尽管有些数/模转换器(DAC)能够以±10V的摆幅驱动负载,但在某些场合仍然使用3.3V的DAC,然后通过放大器将电压放大至±10V。

 

概述

使用3.3V电源供电的现代逻辑系统有时运行在工业环境,可能需要±10V的电压驱动,例如PLC、发送器、电机控制等。满足这一需求的一种方法是选择能够提供±10V电压摆幅的DAC,但更好的方法是使用3.3V的DAC,然后将其输出放大到±10V,理由是:

  • 3.3V DAC比±10V DAC具有更高的逻辑完整性。
  • 3.3V DAC具有更高速率的逻辑接口,可以解脱微控制器部分任务使其处理其它工作。
  • DAC有可能集成在一个大规模、3.3V供电的芯片内(如微控制器),无法提供±10V输出摆幅。
  • 外部负载可能要求一定的输出电流驱动,或驱动容性负载,而±10V DAC无法达到这一需求。

电路框图

电路框图如图1a所示,包含五个主要部分:DAC、基准源、偏置调节、基准源缓冲器与输出缓冲器。

DAC提供相对于基准点压的数字至电压转换,偏置电路对DAC单极性传递函数进行调节,以产生双极性输出,并可校准0V输出点。基准缓冲器能够为基准源提供负载隔离和失调调节。输出缓冲器将偏置电压叠加到信号上,并提供所需的增益,使输出摆幅达到所需要求。另外,输出缓冲器还提供一定的负载驱动能力。

电路说明

图1和图1a所示电路提供了一个将3.3V供电、16位DAC输出通过放大获得±10V输出摆幅的方案。DAC (U2)输出范围:0至2.5V,连接至运算放大器U3的同相输入端。放大器提供(1 + 26.25k/3.75k)或8倍的同相增益。运算放大器的反相输入端接+1.429V电压,该电压由基准和电阻分压网络产生。运算放大器对反相输入的增益为-(26.25k/3.75k)或-7。DAC的0V输出对应于最大负向电压:(0 x 8 ) - (7 x 1.429) = -10V。DAC的满量程输出2.5V对应于最大正向电压:(2.5 x 8) - (7 x 1.429) = +10V。


图1.


图1a.

电路包括以下器件:
 

  • U1:MAX6133A,2.5V基准源
  • U2:MAX5443,16位、3.3V供电串行DAC
  • U3与U4:OP07A,精密运算放大器,±15V供电
  • U5:MAX5491A,带有ESD保护的精密电阻网络,3:4分压比
  • U6:MAX5491A,带有ESD保护的精密电阻网络,1:7分压比
  • U7:MAX5423,100k、256级、非易失数字电位器

基准源

2.5V基准既是DAC的参考电压,也用于生成+1.429V电压。这两项功能使用了相同的基准源,因此,这两个电压间的任何跟踪误差都会影响零失调电压,因此,共模误差只会影响输出的满量程增益,而增益一般不是非常关键的参数。选择2.5V作为主基准是由于该电压非常通用,并且在3.3V、5V供电时均适用。考虑到器件本身的优异性能,我们选择了小尺寸µMAX®封装MAX6133A。该器件的重要参数包括:输出电压精度(±0.06%)、温度系数(7ppm/°C)和长期稳定性(145ppm/1kHrs)。

数模转换器

工业控制应用中最重要的参数是零点失调误差,本例中MAX5443的单极性输出具有±2 LSB失调误差和±10 LSB的增益误差。这些指标足以满足大多数应用的需求,为了将DAC输出转成双极性信号,通常采用偏置电路将DAC的零点转换为-10V (负向满量程),将中间码转换为0V。这时DAC的中间码误差是零点失调与增益误差之和,而非±2 LSB。有些应用或许不能接受这一指标,所以我们使用了数字电位器,对其零点输出进行再次校准。

运算放大器

运算放大器U4作为基准缓冲器放置在基准分压电阻网络(U5)与运算放大器(U3)增益电阻网络之间。如果系统中使用了一个以上的DAC,这些DAC可以共用该缓冲器输出。运算放大器U3对DAC电压进行放大,并为其提供偏置。该运算放大器的选择与配置由负载需求决定。应考虑以下指标:

  • 最大电压摆幅
  • 最大驱动电流
  • 容性负载
  • 短路保护
  • ESD保护

本例中,OP07A能够为负载提供±10V/10mA的驱动,R1与C2网络允许运算放大器驱动较大的容性负载。

影响系统精度的运算放大器参数有VOS (25µV)、IOS (2nA)。IB (2nA)的影响可以由R3、R4抵消。当运算放大器的每一输入端等效电阻相同时,可以消除IB的影响。OP07A的0.1V/µS摆率可能限制系统摆率,但在工业控制应用中往往不存在问题。

电阻网络

电阻网络U5 (3:4比例)将+2.5V基准电压降至+1.429V,电阻网络U6 (1:7比例)设置运算放大器U3的增益。比较重要的参数是初始比例误差(0.035%)和比例温度系数(5ppm/°C)。选择MAX5491是由于该器件具有±2kV的ESD保护,这一点非常关键,因为U6的一端可能会暴露在板外,需承受ESD放电的冲击。

数字电位器

本系统使用256级数字电位器MAX5434调节零点失调误差,该器件具有非易失存储器,能够在电源关闭后保持失调值。U7、U5与R2组成的电阻网络可在0V提供大约±100 LSB的调节范围。

分析

对本电路进行PSPICE灵敏度分析,结果表明最大零点失调误差为13 LSB,利用数字电位器可以修正该误差。温度分析结果表明总的温漂误差为0.126 LSB/°C。当温度变化100°C时,存在12.6 LSB的失调误差。对于绝大多数应用在允许范围之内。

表1. 灵敏度分析,零输出,初始误差(以LSB为单位)

Ref Design Component Description Error Source Error Value Error Units Sensitivity Sensitivity Units Output Error (LSBs)
U1 MAX6133A 2.5V Ref Output Accuracy 0.06 % -2.74E - 04 LSBs/% 0.00
U2 MAX5443 16 bit DAC Gain Error 5 LSBs 1.00E + 00 LSB/LSB 5.00
U3 OP07A OpAMp VOS 25 µV -2.62E + 04 LSB/V 0.66
U3 OP07A OpAMp IOS 2 nA 8.55E + 07 LSB/A 0.17
U3 OP07A OpAMp IB 2 nA 1.08E + 06 LSB/A 0.00
U4 OP07A OpAMp VOS 25 µV -2.29E + 04 LSB/V 0.57
U4 OP07A OpAMp IOS 2 nA 1.68E + 08 LSB/A 0.34
U4 OP07A OpAMp IB 2 nA 8.10E + 03 LSB/A 0.00
U5 MAX5491A Res Network Ratio Tolerance 0.035 % 1.40E + 02 LSB/% 4.90
U6 MAX5491A Res Network Ratio Tolerance 0.035 % 4.09E + 01 LSB/% 1.43
Total
13.07

表2. 敏感性分析,零输出,温度误差(以LSB/°C为单位)
Ref Design Component Description Error Source Error Value Error Units Sensitivity Sensitivity Units Output Error (LSB/°C)
U1 MAX6133A 2.5V Ref Output Temp Co 7 ppm/°C 2.74E - 04 LSBs/% 1.92E - 07
U2 MAX5443 16 bit DAC Gain Temp Co 0.1 ppm/°C 5.00E - 02 LSB/% 5.00E - 07
U3 OP07A OpAMp VOS Temp Co 0.6 µV/°C -2.62E + 04 LSB/V 1.57E - 02
U3 OP07A OpAMp IOS Temp Co 25 pA/°C 8.55E + 07 LSB/A 2.14E-03
U3 OP07A OpAMp IB Temp Co 25 pA/°C 1.08E + 06 LSB/A 2.70E - 05
U4 OP07A OpAMp VOS Temp Co 0.6 µV/°C -2.29E + 04 LSB/V 1.38E - 02
U4 OP07A OpAMp IB Temp Co 25 pA/°C 1.68E + 08 LSB/A 4.20E - 03
U4 OP07A OpAMp IB Temp Co 25 pA/°C 8.10E + 03 LSB/A 2.02E - 07
U5 MAX5491A Res Network Ratio Temp Co 5 ppm/°C 1.40E + 02 LSB/% 7.00E - 02
U6 MAX5491A Res Network Ratio Tamp Co 5 ppm/°C 4.09E + 01 LSB/% 2.05E - 02
Total
1.26E-01

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭