当前位置:首页 > 测试测量 > 测试测量
[导读]高频:传感器的高频截止频率高频截止频率是指在所规定的传感器频率响应幅值误差(±5%,±10%或±3dB)内所能测量的最高频率信号。高频截止频率直接与误差值大小相关,规定的误差范围大则其相应的高

高频:

传感器的高频截止频率

高频截止频率是指在所规定的传感器频率响应幅值误差(±5%,±10%或±3dB)内所能测量的最高频率信号。高频截止频率直接与误差值大小相关,规定的误差范围大则其相应的高频截止频率也相对较高。所以不同传感器的高频截止频率指标必须在相同的误差条件下进行比较。

高频截止频率高的传感器其敏感芯体一定具有较高的固有频率,所以传感器的灵敏度就相对较低。选用高频率测量的传感器时,为了满足传感器的高频频率响应指标,需要适当降低对其灵敏度的要求。压电加速度传感器的高频特性取决于传感器机械结构的一阶谐振频率,实际使用中传感器的一阶谐振频率往往是其安装谐振频率。安装谐振频率则由传感器内部敏感芯体的固有频率以及传感器的总体质量和安装偶合刚度综合决定。安装谐振频率的高低将直接影响传感器的高频测量范围,所以在具有稳定的敏感芯体谐振频率的前提下,提高安装耦合刚度是保证高频测量的重要条件。

在同样的安装条件下一般说传感器的重量越轻其安装谐振频率越高,其高频截止频率也越高。当然决定传感器高频响应的最基本因素还是传感器内部敏感芯体的固有频率。BW-sensor的内部敏感芯体采用国外先进的记忆金属,敏感芯体不仅有较高的固有频率而且有非常稳定的频率响应特性。BW-sensor的高频响应特性及其一致性远优于仅靠零部件公差配合或安装螺钉紧固等方法而设计制造的剪切型加速度计。

传感器的安装形式,安装谐振频率

传感器生产厂商提供的高频截止频率都是在采用较理想的安装条件下所获得的。实际使用中传感器的安装形式的不同和安装质量的好坏会直接影响安装偶合刚度,进而改变传感器的测量高频截止频率。不同安装方式(螺钉,粘接,吸铁磁座和手持)所对应不同安装谐振频率的特征已在很多振动测量的文献中被阐述;但有必要指出当不同形式的安装方式组合在一起(如螺钉安装加配吸铁座),传感器的高频响应将被最低频率响应的安装形式所制约。高频测量的安装方式往往采用螺钉安装形式。为了达到理想的效果,被测对象的表面必需达到所规定的平度和光洁度要求以及传感器安装时应所规定的扭矩,以尽可能地提高安装偶合刚度保证传感器高频截止频率。传感器的高频截止频率越高则对传感器的安装要求也越高,因此使用高频测量传感器的用户必须认真对待传感器的安装。

传感器的输出接头形式和电缆对测量信号的影响

传感器的信号输出接头也是潜在的影响高频测量的重要因素。在实际应用中传感器的接头和电缆也是传感器的组成部分。各种形式的接头,电缆接头与传感器的联接,以及电缆的重量和电缆相对于被测物体的固定形式也将直接影响传感器的谐振频率。传感器的重量越轻,接头和电缆对高频测量的影响越显著。所以当安装条件许可的情况下小型高频测量传感器的接头形式应首先考虑联体电缆,联体电缆具有可动零件少,重量轻的特点,比较适合高频测量。

典型高频测量传感器

低阻电压输出型

D111/D112灵敏度1mV/ms-2,频率范围0.5Hz~10kHz,M5顶/侧端输出

重量:12克,尺寸:13mm(六角)x19mm(高),M5螺钉安装

D121/D122灵敏度2mV/ms-2,频率范围0.5Hz~10kHz,M5顶/侧端输出

重量:12克,尺寸:13mm(六角)x19mm(高),M5螺钉安装

电荷输出型

D21100灵敏度0.1pC/ms-2,频率范围1Hz~12kHz,M5顶端输出

重量:7克,尺寸:10mm(六角)x19mm(高),连体M6螺钉安装

D21103灵敏度0.1pC/ms-2,频率范围1Hz~12kHz,M5顶端输出

重量:7克,尺寸:10mm(六角)x23mm(高),外壳绝缘,,连体M6螺钉安装

D221/D222灵敏度0.3pC/ms-2,频率范围1Hz~12kHz,M5顶端/连体电缆侧端输出

重量:2克,尺寸:7mm(六角)x12~16mm(高),M3螺钉安装

低频:

电荷输出型加速度计不适合用于低频测量

由于低频振动的加速度信号都很微小,而高阻抗的小电荷信号非常容易受干扰;当测量对象的体积越大,其测量频率越低,则信号的信噪比的问题更为突出。因此在目前带内置电路加速度传感器日趋普遍的情况下应尽量选用电噪声比较小,低频特性优良的低阻抗电压输出型压电加速度传感器。

传感器的低频截止频率

与传感器的高频截止频率类同,低频截止频率是指在所规定的传感器频率响应幅值误差(±5%,±10%或±3dB)内传感器所能测量的最低频率信号。误差值越大其低频截止频率也相对越低。所以不同传感器的低频截止频率指标必须在相同的误差条件下进行比较。

低阻抗电压输出型传感器的低频特性是由传感器敏感芯体和内置电路的综合电参数所决定的。其频率响应特性可以用模拟电路的一阶高通滤波器特性来描述,所以传感器的低频响应和截止频率完全可以用一阶系统的时间常数来确定。从实用角度来看,由于传感器的甚低频频率响应的标定比较困难,而通过传感器对时间域内阶跃信号的响应可测得传感器的时间常数;因此利用传感器的低频响应与一阶高通滤波器的特性几乎一致的特点,通过计算可方便地获得传感器的低频响应和与其对应的低频截至频率。

传感器的灵敏度,低频噪声特性和动态响应范围

用于低频测量的传感器一般要求有比较高的灵敏度以满足低频小信号的测量。但灵敏度的增加往往是有限的。虽然加速度传感器灵敏度是能达到10V/g或更高,但是灵敏度高往往带来其他的负面效应,比如传感器的稳定性,抗过载能力,以及对周边环境干扰的敏感性。因此追求过高灵敏度并不一定能解决微小信号的测量,相反高分辨率和低噪声的传感器在工程应用中往往更容易解决实际问题。所以选用具有低电噪声的传感器在低频测量中尤为重要。

为了表明传感器所能测量的最小信号大部分商业化的加速度计也都提供分辨率或电噪声指标。国内绝大部分传感器的宽带电噪声指标一般都标为20μV,而BW-sensor的宽带电噪声指标已降低到10μV。然而对低频小信号测量来说,仅提供宽频带的电噪声并不能完全反映传感器在低频范围内加速度测量的分辨率;这是因为由内置电路引起的低频噪声大小与频率的倒数成正比,即所谓1/f噪声,当测量频率很低时传感器的电噪声输出按指数幅度增长。所以传感器的低频电噪声的数值与宽带电噪声指标是完全不同的而且频率越低这种差别越明显。因此用于甚低频测量的传感器其分辨率常用传感器输出电噪声的功率谱密度表示。此指标的实用意义是传感器在特定频率下的噪声大小,其单位是一般用μV/√Hz或μg/√Hz来表示。BW-sensor内置电路电噪声功率谱密度的典型值为3μV/√Hz@10Hz。

传感器的瞬态温度响应对低频测量的影响

由于压电陶瓷的特性,压电式加速度计对温度的突然变化都会产生不同程度的电荷输出。传感器的瞬态温度响应指标就是衡量传感器对温度变化的敏感程度。这对低频测量尤为重要。由于低频测量的信号很小,而传感器因环境温度变化极可能产生与低频振动信号相当的误差;这两种信号在甚低频范围内很难区分,因此如何减小环境温度变化对传感器输出的影响在低频测量中显得非常重要。传感器的瞬态温度响应指标单位是g/oC,表示瞬态温度每变化一度所相当的加速度输出,其值是通过电压(电荷)输出和传感器灵敏度之间的换算得到的。

传感器的瞬态温度响应是由压电材料直接导致的,因此压电陶瓷对由温度突变所致的电荷输出大小决定了这一指标的好坏。BW-sensor选用目前国外综合性能指标最好的压电陶瓷并结合记忆金属制成的用于低频测量的加速度传感器经国防兵器、航天和大型结构多年的使用验证了传感器具有优越的低频输出稳定性和抗干扰性能。实际甚低频测量中,为了减低环境温度变化对传感器低频信号输出的影响,传感器的外壳尽可能采用隔热保护套。

传感器的安装基座和基座应变对测量的影响

由于低频测量传感器对高频响应的要求不高因此传感器使用任何种安装方式一般都能满足要求。但需要注意两个问题,其一是传感器应尽量考虑使用绝缘底座以避免任何由对地回路引起的噪声影响测量信号。其二是应考虑传感器安装处的被测结构应变对传感器输出的影响,即传感器应变灵敏度大小。剪切结构形式的压电加速度传感器具有良好的基座应变特性,一般都能满足通常的低频结构测试。如果结构应变过大对传感器的测量信号有影响,可通过减小传感器与被测结构之间的接触面积来降低结构应变对传感器测量带来的影响。

低阻电压输出典型低频测量传感器

D171/D172灵敏度100mV/ms-2,频率范围0.04Hz~1.5kHz,宽频电噪声10μV

低频分辨率1μg/√Hz@2Hz,M5顶/侧端输出

D14105/D14205灵敏度10mV/ms-2,频率范围0.1Hz~8kHz,宽频电噪声10μV

低频分辨率1μg/√Hz@2Hz,M5顶/侧端输出

小型化设计,重量12克,尺寸16mm(六角)x21mm(高),M5螺钉安装

D17110灵敏度100mV/ms-2,频率范围0.04Hz~1.5kHz,宽频电噪声10μV

低频分辨率1μg/√Hz@2Hz,绝缘安装底座,顶端连体电缆输出
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭