浅谈变频器的电气试验与测试仪表(一)
扫描二维码
随时随地手机看文章
一、引言
交流变频调速是集电力电子、自动控制、微电子学和电机学等技术之精华的一项高新技术,自问世以来倍受瞩目。它以优异的调速性能、显著的节电效果和广泛的适用性而被国内外公认为世界上应用最广、效率最高、最理想的电气传动方案。随着计算机技术、微电子技术和电力电子技术的发展, 变频技术得到了迅速提升, 应用日渐广泛。变频调速在调速范围、调速精度、动态响应、输出转矩、智能控制、节约电能等方面的优异性能,是其它交流调速方式无法比拟的,特别是在节约能源及提高产品质量、提高设备的效率方面, 获得了很好的经济效益和社会效益。
二、变频技术的发展
随着生产技术的不断发展,直流拖动的薄弱环节逐步显露出来。由于换向器的存在,直流电机的维护量加大,单机容量、最高转速以及使用环境都受到限制。人们开始转向结构简单、运行可靠、维护方便、价格低廉的异步电动机。但异步电动机的调速性能难以满足生产的需要。于是,从20世纪30年代开始,人们致力于交流调速技术的研究,然而进展缓慢。在相当长的时期内,直流调速一直以其优异的性能统治着电气传动领域。20世纪60年代以后,特别是70年代以来,电力电子技术、控制技术和微电子技术的飞速发展,使得交流调速性能可以与直流调速媲美。目前,交流调速已进入逐步代替直流调速的时代。
20世纪80年代, 脉宽调制变压变频(PWM —VVV F) 调速研究引起了人们的高度重视, 并得出诸多优化模式, 其中以鞍形波PWM 模式效果最佳。20 世纪80年代后半期开始, 美、日、德、英等发达国家的VVV F 变频器已投入市场并广泛应用,但它的静态调速精度较差。
之后出现的转差频率控制变频是根据速度传感器的检测, 可以求得转差频率△f , 再把它与速度设定值f相叠加,以该叠加值作为逆变器的频率设定值f1 , 实现转差补偿。与VVV F 相比, 其高速精度大为提高。但是, 使用速度传感器求取转差频率, 要针对具体电动机的机械特性调整控制参数, 因而这种控制方式的通用性较差。
矢量控制变频技术的做法是: 根据交流电动机的动态数学模型, 利用坐标变换的手段, 将交流电机的定子电流分解成磁场分量电流和转矩分量电流, 并分别加以控制, 即模仿自然解耦的直流电动机的控制方式,对电动机的磁场和转矩分别进行控制, 以获得类似于直流调速系统的动态性能。矢量控制方法的提出具有划时代的意义,然而在实际应用中, 由于转子磁链难以准确检测, 系统特性受电动机参数的影响较大, 且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
1985年, 德国鲁尔大学的DePenb rock 教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足, 并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。
直接转矩控制变频是利用空间电压矢量PWM 控制电动机的磁链和转矩实现的。它不需要将交流电动机化成等效直流电动机, 因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制, 也不需要为解耦而简化交流电动机的数学模型。
矩阵式交-交变频, 省去了中间直流环节, 从而省去了体积大、价格贵的电解电容。它能实现功率因数为l, 输入电流为正弦且能四象限运行, 系统的功率密度大。该技术目前虽尚未成熟, 但仍吸引着众多的学者深入研究。
三、变频技术的应用
变频技术主要应用在以下几个方面:
3.1 节能
我国的电动机用电量占全国发电量的60%~70%,风机、水泵设备年耗电量占全国电力消耗的1/3。造成这种状况的主要原因是:风机、水泵等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输出功率大量的能源消耗在挡板、阀门地截流过程中。由于风机、水泵类大多为平方转矩负载,轴功率与转速成立方关系,所以当风机、水泵转速下降时,消耗的功率也大大下降,因此节能潜力非常大,最有效的节能措施就是采用变频器来调节流量、风量,应用变频器节电率为20%~50%。与此类似, 许多变动负载电机一般按最大需求来设计,设计的容量比实际需要高出很多,存在“大马拉小车”的现象,效率低下,造成电能的大量浪费。如采用变频调速, 可大大提高轻载运行时的工作效率。因此推广交流变频调速装置效益显著。
作为节能目的, 变频器广泛应用于电力、冶金、石油、化工、市政、中央空调、水处理等行业中。以电力行业为例, 由于中国大面积缺电, 电力投资将持续增长,同时, 国家电改方案对电厂的成本控制提出了要求, 降低内部电耗成为电厂关注焦点, 因此变频器在电力行业有着巨大的发展潜力, 变频器的节能应用前景非常广阔。
3.2 工艺控制(速度控制)
由于变频调速具有调速范围广、调速精度高、动态响应好等优点, 在许多需要精确速度控制的应用中, 变频器正在发挥着提高工艺质量和生产效率的显著作用。以纺织行业为例, 中国具有世界最大的纺织产品生产能力, 市场范围遍及全球, 产业规模庞大。纺织与化纤行业也是变频器应用最多的行业。在最常见的化纤机械设备中, 选用变频器的设备有螺杆挤出机、纺丝机和后加工机等。选用变频器较多的棉纺设备主要有细纱机、粗纱机、精梳机等。这些设备都要求精确速度控制、多单元同步传动或比例同步(牵伸) 传动等。应用变频器可以提高工艺要求、提升产品质量, 同时减轻工人的劳动强度, 提高生产效率。可以说, 变频器是纺织行业增强国际竞争能力的重要装备。
此外, 在食品、饮料、包装、造纸、机床、电梯等行业, 国内的企业需要扩大生产规模, 提高生产技术, 变频器的应用前景和发展潜力都不可小觑。
3.3 软启动
交流电动机的启动电流一般为5-7倍额定电流,如果直接启动会对电网引起冲击,影响同一电网上其他电气设备的正常运行。另外巨大的启动电流对电动机和机械设备也会造成严重的电磁应力和机械应力,缩短设备的使用寿命,因此电力系统希望能够软启动(特别是高压大容量电动机)。某些加工机械,例如自动流水生产线(瓶、罐包装线,输送机等),要求平稳启动和停车以免相互碰撞倒歪;水泵为了防止水锤、喘振现象,也希望软启动和软停止(最好是“泵控特性”专用的软启动和软停止)。
变频器可以调整通过输出电压的频率,从低频开始,一直调到额定频率,从而实现电机的软启动/停止,降低启动/停止冲击。
3.4 变频家电
在普通家庭中, 节约电费、提高家电性能、保护环境等受到越来越多的关注, 变频家电成为变频技术应用的另一个广阔市场。它在节能、减小电压冲击、降低噪音、提高控制精度、延长使用寿命等方面有很大的优势。以变频微波炉为例, 它是以变频器替代了传统微波炉内的变压器, 变频器通过变频电路可以将50Hz的电源频率任意地转换成为20000~ 45000Hz 的高频率, 通过改变频率来得到不同的输出功率, 解决了传统微波炉加热不均匀的弊端, 实现了真正意义上的均匀火力调控。除此之外, 与传统微波炉相比, 变频微波炉还具有机身轻巧、噪音小、烹饪速度快、节电等特点。
目前, 中国是世界上最主要的家电供应国, 但家电采用变频器的比例很低, 而在日本, 90% 以上的家电是变频控制。因此, 变频家电具有非常大的发展潜力。
四、变频器的试验要求
近年来,交流变频调速技术在我国有了突飞猛进地发展,我国的变频器产业从无到有不断壮大,发展迅速。据统计,我国现有大大小小的变频器生产厂70多家,年销售额在7亿元左右,但这只占全国变频器市场容量的一小部分,80%~90%的国内市场被各种国外变频器所占领。回顾我国变频器的发展历程,结合我国国情开发出性能优越、适销对路的产品,逐步扩大市场份额,是国人的期盼。而市场经济是依靠法规形式来规范、协调市场行为的,标准也将作为法律、法规的技术支撑来参与规范和调控市场。只有及时地了解先进标准的发展水平,制定符合我国国情的标准,提高企业的标准化意识,才能提高产品质量,推进行业的发展和进步。
全国电力电子学调速电气传动系统半导体电力变流器标准化技术委员会是在国内外电气传动调速产品迅速发展的形势下于2000年成立的,秘书处挂靠在天津电气传动设计研究所,负责国家电气传动调速系统技术领域内的标准化技术工作的组织及归口,涉及的产品主要是国民经济基础工业交直流电气传动设备。目前已制订了6项电气传动调速系统的国家及行业标准:GB/T3886.1-2002、JB/T10251-2001、GB/T12668.1-2003、GB/T12668.2-2003、GB/12668.3-2004、GB/T12668.4。此外,GB/12668.5、GB/12668.6正在进行最后阶段的审批。
变频器的试验类型包括型式试验、出厂试验、抽样试验、选择试验、车间试验、验收试验、现场调试试验、目击试验。
1) 型式试验:对按照某一设计制造的一个或数个部件进行的试验,用于说明该设计满足特定的技术要求。
2) 出厂试验:在制造期间或制造之后对各个部件进行的试验,用于确定其是否符合某一准则。
3) 抽样试验:在一批产品中随机抽取的一些部件上进行的试验。
4) 选择试验:除型式试验和出厂试验之外,按照制造厂之意,或经过制造厂和用户或其代理人协商而进行的试验。
5) 车间试验:为了验证设计,在制造厂的实验室里对部件或设备进行的试验。
6) 验收试验:合同上规定的、用以向用户证明该部件满足其技术规格中某些条件的试验。
7) 现场调试试验:在现场对部件或设备进行的试验,用于验证安装和运行的正确性。
8) 目击试验:在客户、用户或其代理人在场的情况下进行的上述任何一种试验。
变频器标准试验项目见表4-1:
表4-1
其中电气试验方面主要的是测量变频器的输入、输出值,主要包括以下几个值:
1)输入值
──额定输入电压;
──额定输入电流;
──输入频率;
──额定容量;
──有功功率;
──功率因数;
──相数;
──输入各次谐波;
──输入总失真度。
2)输出值
──最大额定输出电压;
──额定连续电流;
──额定功率;
──频率范围;
──过载能力(过载能力适用于额定的转速范围);
──输出各次谐波;
──输出总失真度;
──相数;
──输出相序。
3)效率
在设计的频率范围内,各个频率下的效率。