当前位置:首页 > 测试测量 > 测试测量
[导读]很长时间以来,频谱分析仪与跟踪信号发生器一起,对有源和无源网络进行扫频标量频率响应测量。尽管许多频谱分析仪带有跟踪信号发生器选件,但是大多数这种信号发生器只能为分析仪的基本频带提供扫频信号。利用下面的

很长时间以来,频谱分析仪与跟踪信号发生器一起,对有源和无源网络进行扫频标量频率响应测量。尽管许多频谱分析仪带有跟踪信号发生器选件,但是大多数这种信号发生器只能为分析仪的基本频带提供扫频信号。利用下面的方法还会覆盖许多频谱分析仪的第一扩展高频段。另外,也给出了一个允许对带有中频变换的被测部件进行扫描的方法。

图1给出了一个常见的具有跟踪源功能的RF频谱分析结构,在这个结构中,跟踪信号发生器由一个混频器、放大器和设定在第一个固定中频(IF)的RF信号发生器实现。对于这种方案,只有在分析仪扫描第一本振(LO)时,才能实现频率扫描。另外,分析仪还必须提供第一本振的输出采样。如果分析仪的分辨带宽(RBW)滤波器(不管是模拟还是数字)是固定的,而且只扫描第一LO,这种方案才能输出正确的信号。

在这种配置中,信号发生器被设定到所需频段(这可以从分析仪制造商的数据或者实验中获得)的第一IF。第一IF可以通过下面的方法来发现,即使用最宽的分辨带宽(RBW)滤波器,并调整信号发生器直到在分析仪上出现噪声基底上升时。通过切换到较窄的RBW,并调整信号发生器到最大幅度,可以更加精确地估计IF值。

当分析仪的第一LO信号和信号发生器第一IF信号混频时,混频器的输出将包含一个频谱成分,该成分刚好是分析仪在扫描中的那一点调谐到的RF信号(扫描信号发生器信号)。然后把DUT放到混频器输出和分析仪的RF输入之间。跟踪信号发生器信号在扫描过程中会自动扫描,为扫频标量测量描提供一个完全同步的信号。

尽管将分析仪的LO输出直接连到混频器的想法很好,这会给大多数的分析仪带来问题。通常,在第一LO输出口没有足够的反向隔离。其结果,信号发生器的第一IF信号将会泄漏到分析仪的第一IF级,从而进入仪器的第一和后续的IF级,使得噪声基底提高。

一个环形器能够增加隔离(大约20dB),但是会降低送到混频器的第一LO功率。更好的方法是采用一个高隔离度的放大器,它能为直到6GHz的频段提供高达50dB的隔离。另外,它能够允许宽带工作,并在只能得到低功率的第一LO时,它可以实现好的LO驱动电平。设计的这种高隔离度放大器的输入功率为0dBm。

这种改进的方法和配置见图1,它是用DKD公司开发的两种跟踪信号发生器系统的基础。在其中一个系统(型号为TG100)中,混频器和高隔离度的放大器被集成在一起(图2)。在另一个系统(型号为TG200)中,放大器是一个独立的模块,这样,对于低频段和高频段的特定分析仪,可以使用不同的混频器(图3)。前者工作频段为500kHz到2.6GHz,并且它的第一高频扩展段范围为2.0到4.5GHz。后者对于低频段(到2.6GHz)使用一个混频器,而对于第一高频扩展段(到6GHz)使用另一个混频器。两个系统的最佳输入功率均为0dBm。对于许多分析仪,增加一个第一LO倍频器和适当的混频器,就可以工作到第二高频扩展段,对于许多仪器来说,该频段都在10GHz以上。

图4给出第二种跟踪信号发生器系统,其中使用来自安捷伦公司的HP8566A/B频谱分析仪。该信号发生器配置能够覆盖频谱分析仪的第一频段(直流到2.5GHz)。该仪器在低频段的第一IF是3621.4MHz,而信号发生器在该频率上的功率大约为+6dBm。在在这种配置中,信号发生器输入混频器的射频(R)端口,第一LO的采样输入到本振(L)端口,中频(I)端口中包含由混频产生的差信号,即跟踪信号发生器输出信号。混频的和产品也加到DUT的输入端,但是其频率为2×(3621.4MHz)=7242.8MHz或者更高。I端口的3dB衰减器改进了从DUT往跟踪信号发生器看回去的电压驻波比。6dB衰减器把从HP8566来得的LO信号功率降到更适合于跟踪信号发生器的0dBm。

利用该测试配置来进行测量,被测部件(DUT)为一段直通传输线(图5),频率范围从直流到2.5GHz。把分辨带宽滤波器手动设定为3kHz,并手动设置视频带宽和扫描时间,此时,未经校准的结果显示,从低端到高端有大约7dB的衰减(滚降)。当在分析仪输入和跟踪信号发生器输出用50?终端取代直通线被测部件时,可以在超过80dB的动态范围上(图6)看到噪声基底。从分析仪结果中减去(从图形上)图1中直通线相应的衰减。在视频相减的结果是,连接直通线时出现平坦的踪迹。因为纠正是通过视频存储[VIDMEM_A-(VIDMEM_BdL)]完成的,由于滚降,高端的噪声基底将升高,因此使用3kHz的RBW、3621.4MHz频率的信号功率为+8dBm、10dB内部衰减以及I端口3dB衰减器,就能够实现大约80dB的动态范围。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭