当前位置:首页 > 测试测量 > 测试测量
[导读]摘要:为提高正余弦编码器的分辨率,提出用硬件细分的方法将512刻线的正余弦编码器进行信号12倍频,利用比较器和异或门搭建电路,将输出信号倍频12倍,该方法读数迅速,能达到动态测量的要求,而且成本低。详细分析其

摘要:为提高正余弦编码器的分辨率,提出用硬件细分的方法将512刻线的正余弦编码器进行信号12倍频,利用比较器和异或门搭建电路,将输出信号倍频12倍,该方法读数迅速,能达到动态测量的要求,而且成本低。详细分析其工作原理,用Saber软件进行电路仿真。仿真结果表明该方法能使512 p/r分辨率的编码器提高到6 144 p/r,在实际应用中得到了验证。
关键词:正余弦编码器;倍频;分辨率;Saber软件

0 引言
    随着自动化技术的发展,各种传感器广泛应用于数控机床,机器人等伺服控制系统的位置检测。目前常用的是高分辨率的光电编码器、旋转变压器、正余弦编码器。与其他系统相比,在提高动态特性方面,正余弦编码器有独特的优势。正余弦编码器输出正余弦波形的A通道和B通道反馈,通过硬件或者软件方法求其相应的角度。为了进一步提高分辨率,通常采用电子学细分,来提高信号的重复频率。电子学细分有软件细分和硬件细分,软件细分采用高速单片机,DSP、FPGA高速数字处理器件,结合细分算法实现。硬件细分有电阻链细分、空间细分、锁相倍频。也有软件和硬件方法结合使用。采用软件细分方法时,编码器转轴转速波动会影响其细分精度,系统的实时性达不到要求。基于以上问题,本文采用一种结构简单并易于实现的硬件细分方法,将512刻线的正余弦编码器的分辨率提高到6 144 p/r,并且转换速率快,细分精度不受编码器转轴转速波动影响,成本低容易实现。

1 细分原理
    如图1所示,在理想情况下,正余弦编码器旋转一周期输出两相正交的电压信号(A相和B相)。


    上述A,B相电压信号可以表示为:
    UA=Usinθ      (1)
    UB=Usin(θ+π/2)     (2)
    式中:U为正余弦编码器输出电压信号幅值;θ为电压信号相位角。
    其细分原理是选择式(1),式(2)中θp对应的Up作为输出计数脉冲的电压参考点,当输入信号的幅值U≥Up时,则输出计数脉冲。当选择不同的参考电压时,编码器转过一定的角度并输出固定的脉冲,将正余弦信号细分。
    其设计思想是:编码器正余弦信号经过电压比较器,当U≥Up时,电压比较器输出1,当U<Up时,电压比较器输出0。每经过一个Up,比较器便输出一个计数脉冲。选择p个不同的参考电压,比较器便输出p个不同的计数脉冲。由这p个计数脉冲便输出一个p倍频后的信号。本文要将信号细分12倍,则需要比较器输出12个不同的计数脉冲,其方法是将2π分为12等份:
   
    选择偏置电压是因为比较器的真实电压并不能达到5 V,当选择供电电源为9 V时,信号输入电压也要偏置4.5 V才能取得良好的倍频结果。使用Saber电路仿真软件进行电路仿真,最后得到经过12倍频后的信号Ap和Bp,如图2~图4所示。



2 电路逻辑分析
    在电路仿真图中,用逻辑分析仪观察比较器输出的波形,正余弦细分电路中比较器的逻辑波形如图5和图6所示。


    经过异或门后输出12倍频的计数脉冲[12XA]和[12XB]的逻辑表达式为:
   
    参考比较器波形图和电路原理图可知,信号经过异或门后,每一周期输出等分的12个脉冲,实现了12倍频,其倍频数与比较器个数一致。

3 结果分析
    搭建好硬件电路后,用示波器显示,其波形如图7所示。


    由图7可以看出一个周期输出了12个脉冲,达到了将信号12细分的目的。对比软件细分方法,在动态输入条件下,该硬件细分方法有效提高了细分精度。软件细分方法通常需要A/D采样和角度计算。由于输入信号的频率不稳定会导致A/D采样中丢失部分输入信号,或者A/D转换器来不及转换,使得数据得不到及时处理,影响编码器输出精度,也限制了编码器的响应速率。而采用该硬件细分方法可以有效解决上述问题。使用比较器来实现信号倍频,低倍频时是一种很好的方案,结构简单且易于实现,但是高倍频时,需要使用的比较器个数增多,而且比较器还存在滞后问题,这在实际应用中是要注意的。图8~图10是正余弦编码器6倍频,10倍频,12倍频对比图。



4 电路原理图
    用6片比较器LM339和5片异或门7486来搭建电路,实验用的电路板如图11所示。


    该电路结构简单,成本低,易于实现。由结果分析可知,随着倍频倍数的增加,比较器的滞后性越发明显,因此不能为了追求高倍频而无限制地使用比较器。

5 结论
    用该硬件细分方法实现的信号细分,电路结构简单,成本低,读数迅速,能达到动态测量的要求。虽然随着倍频倍数的增加,比较器的滞后性会越明显,但是在低倍频时,还是一种比较好的方案,在提高正余弦编码器方面比较实用,该方法通过仿真调试和实验,验证了该方案是可行的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭