无源互调测量及解决方案
扫描二维码
随时随地手机看文章
1、概述
无源器件会产生非线性互调失真吗?答案是肯定的!尽管还没有系统的理论分析,但是在工程中已经发现在一定条件下无源器件存在互调失真,并且会对通信系统(尤其是蜂窝系统)产生严重干扰。
无源互调(Passive Inter-Modulation,PIM)是由发射系统中各种无源器件的非线性特性引起的。在大功率、多信道系统中,这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱从而影响正常的通信。
所有的无源器件都会产生互调失真。无源互调产生的原因很多,如机械接触的不可靠、虚焊和表面氧化等。
5年前,大部分射频工程师很少提及无源器件互调问题。但是,随着移动通信系统新频率的不断规划、更大功率发射机的应用和接收机灵敏度的不断提高,无源互调产生的系统干扰日益严重,因此越来越被运营商、系统制造商和器件制造商所关注。
长期以来,无源器件的互调失真测量技术一直被国外公司所掌握,并垄断了测量产品市场。今天这种局面发生了变化,无源互调测量技术难关已经被中国本土的射频工程师们攻克,而且低成本的商用无源互调测量系统也已诞生。
2、无源互调的表达方式
无源互调有绝对值和相对值两种表达方式。绝对值表达方式是指以dBm为单位的无源互调的绝对值大小;相对值表达方式是指无源互调值与其中一个载频的比值(这是因为无源器件的互调失真与载频功率的大小有关),用dBc来表示。
典型的无源互调指标是在两个43 dBm的载频功率同时作用到被测器件DUT时,DUT产生-110 dBm(绝对值)的无源互调失真,其相对值为-153 dBc。
3、无源互调测量方法
由于无源互调值非常小,因此无源互调的测量非常困难。到目前为止,无源互调的测量项目和测量方法尚无相应的国际标准,通常都是采用IEC推荐的测量方法。
4、无源互调测量面临的新挑战
随着通信技术的不断发展,新的系统干扰问题不断出现,给测量工作者带来了新的挑战。
(1)反向互调测量
在一些功率合成系统或者多载频的共用系统中,当两个大功率信号同时作用于一个两端口器件的输入和输出端时,在输出端口将会产生很大的互调产物。在多系统合路平台(POI)系统中情况更为复杂。各种不同频段的载频同时进入系统,除了本频段的互调干扰外,还会产生跨频段的互调干扰。
(2)测量范围
典型的无源器件,如定向耦合器、功率分配器、双工器、连接器和电缆组件等,其互调产物通常在-120~-100 dBm,也就是相对于43 dBm测量条件下的-163~-143 dBc;而某些器件的互调产物更大,如铁氧体器件的互调产物可达-60 dBc甚至更大。对于前一类器件,不要求测量系统的测量范围太大。目前同类产品的互调测量上限是-65 dBm,也就是43 dBm条件下的-108 dBc。对于后一类器件,可以采用通用的频谱分析仪测量。频谱分析仪是一种通用的射频分析仪器,也称为“射频万用表”。既然获此美誉,频谱分析仪的动态范围必定足够大。即使是低端频谱分析仪,测量范围也可以达到-150~30 dBm。
(3)测量精度
对于无源互调测量系统的测量精度,虽然目前还没有相应的国际标准,但是无源互调的测量精度依然是有章可循的。与测量精度有关的因素有功率校准和系统的剩余互调。
●功率校准
功率校准对于测量精度有很大关系。从理论上说,载频增加1 dB,互调产物增加3 dB。在IEC推荐的测量方法中,建议加载到DUT的测量功率是每载频43 dBm,这个值已经成为行业的标准测量功率。随着通信系统功率的不断增加,参照功率标准并非一成不变,可能会出现更高的参照功率标准。
要准确校准测量端的功率,频谱分析仪不是最合适的选择,因为频谱分析仪的幅度测量精度通常为±1dB,加上衰减器的影响,总的功率误差可能超过±1 dB。大功率测量的最佳手段莫过于通过式功率计,这种功率计采用高方向性的定向耦合器,可以提供大功率在线测量。
●系统的剩余互调
测量系统自身的剩余互调值是系统的最主要指标之一。系统剩余互调和DUT互调之间的差值决定了测量结果的精度。在IEC中建议的可接受的系统剩余互调和DUT互调之间的差值为10 dB。这意味着系统的测量误差为+2.4/-3.3 dB。在小互调测量情况下,这个误差完全可以接受。对于大互调测量(大于-80 dBc时),10 dB的余量似乎小了些,20 dB比较合理。
5、无源互调测量系统的实现需要考虑的要素
无源互调测量实际上是在实验室重现器件在实际工作条件下所产生的无源互调,因此,如何能逼真地模仿实际工作环境是无源互调测量系统的关键所在。要做到这一点,必须考虑以下几大要素。
.
(1)测量端功率的幅度
测量端功率大小的设置原则应该是可能加载到DUT端的最大功率的上限。在IEC中提到:除非特别说明,加载到DUT的测量功率为2×43 dBm。显然,这是针对早期的基站而言,直到现在,这个功率等级依然适用于大多数器件的测量。随着新的数字蜂窝通信标准的不断诞生,出现了更大幅度和更大范围的功率等级。如CDMA和WCDMA,由于这些调制信号具有很高的峰均功率比,为了满足系统的要求,放大器的1 dB压缩点功率要远远超过调制状态下的平均功率。因此,除了43 dBm以外,还出现了小至26 dBm和大到51 dBm条件下的测量要求。
(2)载频的数量
绝大部分无源互调测量都是在两载频的条件下进行的,但是也有四载频条件下的测量。随着无线信道的日益拥挤,多载频的无源互调测量可能在不久的将来被列入有关的测量标准。
(3)测量功率流的方向
将两个载频合成后从一个方向同时注入DUT,这已经是无源互调测量的惯性思维了。但是在实际应用中,系统中的器件要承受来自不同方向的功率。对于这一点,早期的无源互调测量系统并没有考虑到。
(4)频率配置
早期,测量者关心的是落在接收频段的互调,如今越来越关心落入发射频段的互调。一些标准的无源互调测量系统只能测量落入接收频段的互调,对于落入发射频段的互调测量无能为力。另外,由于多制式系统的共存,跨频段的互调干扰也将逐渐显现。对于无源互调测量系统来说,除了接收频段外,发射频段和跨频段的互调分析和测量也是需要考虑的重要因素。
(5)测量范围
这个问题在前面已经有详细的描述。频谱分析仪自身的测量范围远远超过专用的测量接收机。此外,频谱分析仪是通用仪器,可以充分提高资源的利用率。
6、无源互调测量解决方案
经过不懈的努力,上海创远信息技术股份有限公司成功开发了第一套本土化的商用无源互调测量系统——PIM系统。PIM测量系统是参照了IEC推荐的测量方法并结合当前各种新的测量要求开发的,整个设计过程完全遵循无源互调测量的“仿真原则”。
(1)共享测量平台
PIM系统采用“共享平台”设计理念,系统的基础平台采用通用的频谱测量技术,第二层平台分别是GSM900和DCS 1800的基本测量系统,在此基础上可分别升级到CDMA800和WCDMA频段,从而覆盖了移动通信频段。
得益于这种设计理念,PIM系统的升级和扩容变得十分便利和经济。如要升级到TETRA频段和E-GSM频段,只要增加相应的射频子系统即可;即使要升级到450 MHz和3.5 GHz频段,第一层的共享平台依然可以利用。随着新的通信系统(如POI系统)的不断出现,PIM系统可以提供足够的升级空间以开发出客户化的测量解决方案。
(2)内置信号源
PIM系统内置信号源,这种信号源是根据测量要求的频段而配置的,目的是为了降低用户的投资成本。
(3)灵活的结构
PIM系统分为高度集成化和19英寸机柜两种结构,高度集成化结构占地面积小,适用于单一测量功能的应用;19英寸机柜结构更方便系统的升级和扩容,每个子系统模块均采用19英寸的标准插箱,可以随心所欲地增加新的功能模块。
(4)可调的大功率源
在正向互调测量时,作用在DUT端的测量功率可大于44 dBm;在反向互调测量时,作用在DUT端的功率可高达49 dBm。如果需要,系统功率可以提高到51.7 dBm(150 w)。配合标准信号源,测量端功率任意可调。为了保证测量精度,每个测量端的功率都经过5012C通过式功率计的精确校准。
(5)通用的基础仪器
除内置信号源外,PIM系统还兼容通用的基础射频仪器,从而保证了系统的通用性和可扩展性。
(6)具有针对性的测量解决方案
除具备IEC推荐的基本测量方法外,PIM系统还提供了大量具有极强针对性的测量解决方案,包括发射频段的互凋测量、反向互调测量、谐波测量、POI系统的互调测量和更大功率的合成应用等。
7、结束语
无源器件互调失真的分析和测量比较复杂。根据无源互调测量的“仿真原则”,一套无源互调测量系统应具有组合功能,具有良好的兼容性和升级的便利性,上海创远信息技术股份有限公司开发的PIM无源互调测量系统很好地满足了这几大方面的要求。