当前位置:首页 > 测试测量 > 测试测量
[导读]移动通信网络所用功率放大器的一个关键性能参数为 非线性失真。但过度的非线性失真会使误码率( BER)提高,导致移动通信网络中所传输的语音及数据信号质量下降。幸运的是,该矢量信号分析仪不仅可以用于精确地检测矢量

移动通信网络所用功率放大器的一个关键性能参数为 非线性失真。但过度的非线性失真会使误码率( BER)提高,导致移动通信网络中所传输的语音及数据信号质量下降。幸运的是,该矢量信号分析仪不仅可以用于精确地检测矢量及标量的调制误差,如误差向量幅度( EVM)特性,还可用于评估放大器及系统失真特性。因分析仪进行有效测量时亦无需任何特殊检测环境或检测信号,该分析仪可在移动通信网络正常运行的情况下分析来自基站的冲击信号。

通常依赖量程可调的伏特计或频谱分析仪,采用双音或多音方法1来确定被测器件(DUT)的压缩点。网络分析仪采用功率扫描作类似分析。这两种方法中所用的信号皆为测试信号或是仅仅优化用于频谱带宽或统计分布的信号,并非实际工作环境下的信号。   

可以利用矢量信号分析仪来测量标量、矢量调制参数及数字调制移动无线信号的调制误差。按现代的理念,因在常规的测量过程中已收集了所有必要的数据,这些设备也应可以测量及评估线性误差。实际上,只需要一套标准的测试设备,并不需要附加的测量设备或特殊测试信号。   
图1所示为一组典型的、使用矢量信号分析仪进行测量的测试配置。带同相、正交调制能力的信号发生器产生一个RF移动无线信号,并将其送至被测器件(DUT,如移动通信输出放大器)的输入端。放大器的输出端通过衰减器(避免仪器工作范围外的高压)与矢量信号分析仪(如Rohde&Schwarz公司的FSQ-K70)输入端相连。甚至可用这一组设备直接测量基站的RF输出信号。   

图2为矢量信号分析仪的框图。经数字调制的RF输入信号通过RF及中频级(模块1、2)前往模-数转换器的输入端(模块数字信号处理器 DSP对基带信号解调至位级(图2中模块7),并产生一个与非失真发射信号相应的基准信号。信号分析仪仅需了解调制结构及适当滤波(模块8)。在对中心频率偏移、相位及符号定时(图2,同步模块9)校准后,被测信号的幅度和相位与基准信号相适应,以取得EVM的均方根值( RMS)。在最后一级中,将被测信号与参考信号进行比较(图2模块11)。在此时对典型调制误差(如与时间对应的幅度误差,与时间对应的相位误差)进行计算。这些信号用于表示矢量及星座图或用于在以后计算失真特性。   




  
  



  
图3(a)所示为经上升余弦滤波的未失真的16态正交振幅调制信号的理想星座图。图3(b)所示为纯幅度失真放大器的输出信号。两图中都标识了复杂基带信号的矢量图。实际的星座点(图3(b))在其理想位置的附近。栅格的曲率一定程度上表示了非线性、基于幅度调制的幅度失真。图3 (c)所示为幅度-时间特性。理想信号为蓝色曲线,实际信号为红色曲线。为便于识别,用正方形或圆标识符号时间。该理想信号的三个幅度等级用R1至R3的水平线表示,而测量信号则用D1至D3的水平线表示。   

尽管理想信号与实际信号在低电平段其本相吻合,但随着电平的增大,偏离加大。若用x/y坐标来表示各电平上的失真信号取样与其对应的理想信号取样,则所得结果便为调制―振幅特性。为了更好地判定,该电平段也可以表示为直线。特性曲线与对数线(线性增益)的偏离,即为放大器非线性失真的量度[见Figs.3(a)及3(b)]。   



  

实际上,可用理想信号与实际信号的信号比或用理想信号与实际信号间差值信号的对数值来描述失真特性。若用x/y坐标描绘每个信号差值样本与理想信号,则所得结果即为AM/AM失真特性(基于振幅的振幅失真)。将所有的测试点标入特性曲线中。这样,特性曲线与水平0-dB线间的偏离即为非线性失真量,见[图3(e)和图3(f)]。将相位误差看作AM/PM特性曲线理想幅度的函数(基于振幅的相位失真),从而可得到相位误差。   

在分析仪工作过程中,用解调位(比特)重建理想信号。这样就无需知道之前的发射数据序列或理想I/Q取样。根据以上所述方法,通过比较理想信号与测量信号,即可确定实际特性。这使得放大器可在以后的精确工作模式上被测量。   

为计算调制误差,分析仪通过将符号时间的 EVM的有效值( RMS)最小化来适配测量信号。有关这类的适配,在常见的移动无线标准(如 EDGE)中有具体描述。

图4所示为标有符号时间、经适配之后的误差信号。以对数形式表达其与参考信号的关系,可以发现,适配导致测量点及内插压缩曲线在垂直方向上略有偏移[图3(f)及4(b)]。

插值后,用两个记号标记压缩点,其水平间隔固定为10dB。通过在特性曲线上移动记号来决定两记号垂直间隔为1dB的点。此时,标为记号C的该位置即表示1dB压缩点,见图4(b)。   

图4(c)及4(d)所示为带上升余弦发射 滤波的16 QAM调制方案的实际测量结果。该发射滤波并不需要接收滤波器并能自动产生符号间无干扰(即,集中的)的星座点。适配产生如下图形:即星座点的位置被轻微地向高电平移动。中间位置的星座图看起来相符,而具有高电平的外部点向内微移。   

通过插入所有的测量点[见图4(d)的上半部]可得放大器的AM/AM失真曲线。图4(d)底部所示为AM/PM曲线,即用x/y轴表示的信号的相位差与理想信号电平的关系。在适配后这两个特性曲线在垂直方向上都有移动,但对压缩点的微分计算通常还能提供正确的数值。   

该失真测量新方法也可与所有线性调制方案及任一类型的发射滤波器一道采用。然而,新方法要求一个没有接收滤波的测量信号。任何有带宽限制的接收滤波,将因为滤波器的冲击响应被分配到一定量的符号周期上,从而导致非线性效应。结果将造成信号特性的恶化。   

为解释新的失真测量方法,用基于 EDGE移动无线标准的冲击信号作为例子。数字标准EDGE使用3?/8-8PSK调制方案。对于发射机,有一个特殊的滤波器,该滤波器无符号间干扰。做为示范测试的一部分,EDGE冲击信号被解调,并将测试结果距离对齐,按同步序列的位置排列并限制在该冲击信号有效范围(有用部分)内。这样,冲击信号的边缘及之外的区域就不会被用于测量分析。   

对于宽带、双极小信号放大器(没有显示)的测量,矢量信号分析仪计算所加的采样输入功率,确定压缩点及相位误差,并按绝对刻度显示。对于这一放大器,计算出来的1dB压缩点为+10.36dBm(被测部件的输出电平),相位失真为8.71deg。除了这些电平及相位特性之外,对平均功率电平与峰值因子(峰值与平均功率的比值)的比较可提供与DUT失真相关的更多信息。这些测量结果显示:平均功率压缩为0.68dB、峰值因子下降了0.82dB。   

这套最先进的矢量信号分析仪,使得非线性失真特性及调制相关的压缩参数的测量变得非常容易。这套检测设备还可用于传统的矢量分析及失真测量,还可以直接验证功率放大器的预矫正的有效性,而不像其它检测设备,如 EVM那样,只能通过推断才能实现。   

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭