当前位置:首页 > 测试测量 > 测试测量
[导读]EVM是衡量数字信号质量常用的参数,能综合反映影响信号完整性的各种因素,但是测量和分析过程却比较复杂。本文首先分析了WLAN信号的帧结构和EVM测试过程,然后分析测试EVM时仪表需要注意的设置,最后介绍IQxel分析EV

EVM是衡量数字信号质量常用的参数,能综合反映影响信号完整性的各种因素,但是测量和分析过程却比较复杂。本文首先分析了WLAN信号的帧结构和EVM测试过程,然后分析测试EVM时仪表需要注意的设置,最后介绍IQxel分析EVM时灵活的参数设置,可以满足研发和生产过程的各种需求。

误差矢量幅度(EVM)是衡量WLAN信号质量的一个重要指标。环境噪声、寄生信号、杂散信号、相位噪声和信号压缩等因素都会降低信号的EVM,因此EVM提供一个综合的信号质量分析。为了提高频谱利用率和数据速率,IEEE标准中引入了64QAM、256QAM等更高阶调制方式,对EVM指标的要求也越来越高。而EVM测试结果可能由于相位捕获、信道估计、频率同步、数据帧均衡等设置不同而不同。我们首先从分析WLAN信号帧结构开始,了解为什么这些设置会影响EVM的测试结果。

1. WLAN信号帧结构

IEEE802.11a/g/n/ac标准都采用正交频分复用(OFDM)的调制方式。OFDM将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到每个子信道上进行传输。每个子载波传输QAM或PSK编码的不同数字信号。子载波分为数据子载波和用来同步的导频子载波。子载波的数量随信道带宽和标准的不同而变化,比如802.11a的20MHz带宽信号包含52个子载波(48个数据子载波和4个导频子载波),160MHz的802.11ac信号包含484个子载波(468个数据子载波和16个导频子载波)。

WLAN信号在时域是以数据帧的方式传输,每个数据帧由前导码(preamble)、包头(header)、数据负载(data)和帧校验序列(FCS)组成,如图1所示。前导码用来同步和信道均衡,11n标准中定义了6种PLCP Preamble类型,其中所有OFDM数据帧中都定义了10位短训练序列(STF)符号,2位长训练序列(LTF)符号。短训练序列用来信道自动增益控制(AGC)、分集选择和载波频率偏移粗调,长训练序列用来载波频率精调。PLCP包头传输解码需要的本地信息,包括PPDU传输速率、PSDU传输时间、服务比特和校验位(CRC)。负载包含不同长度的报文信息。FCS是802.11标准帧中最后四个字节,用来循环冗余校验(CRC)。

图1. 802.11数据帧结构

2. EVM指标的测量过程

测试EVM时,由于仪器对理想信号未知,测量计算时是先将测试到的信号恢复到比特数据,作为原始信号,然后再对原始信号进行调制等处理后得到参考信号。测试信号和参考信号进行比较得到EVM.IEEE 802.11标准中定义的WLAN信号EVM计算过程如下:

a)检测数据帧的开始位置

b)检测短训练序列和长训练序列,建立精确时间同步(在一个采样分辨率内)

c)估算粗调和细调频率偏置

d)根据估算的频率偏置,修正帧的频偏

e)估算每一个子载波和每一条传输链路的信道响应系数

f)将每个OFDM数据符号转化为各个子载波的接收信号。从所有数据流的导频子载波中估算出相位,根据估算的相位修正子载波信号。将接收链路每个子载波上的数据分组成矢量数据序列,将此矢量序列乘以信道相位估计中生成的迫零均衡矩阵。

g)对每个空间流的数据子载波解调出的矢量位置,找到最近的星座图点,计算与理想星座图点的欧式距离。

h)计算帧中所有有效值(RMS)误差的平均值,计算公式如下:

其中:Nf是测量的帧数

I0(if,is,iss,isc),Q0(if,is,iss,isc)表示子载波isc,空间数据流iss和帧if中OFDM符号is对应的理想星座图符号点。

I(if,is,iss,isc),Q(if,is,iss,isc)表示子载波isc,空间数据流iss和帧if中OFDM符号is对应的实际星座图符号点。

P0是星座图的平均功率。

IEEE标准中定义WLAN信号EVM测试结果至少需要采集20个帧(Nf),每个帧包含至少16个OFDM符号,每个符号承载的数据为随机数。标准也对不同的调制技术规定了不同的EVM计算方法,对于802.11b/g的相对低数据速率直接序列扩频(DSSS)信号,计算EVM峰值。而对于802.11a/g /n/ac的高数据速率OFDM信号,则计算多载波与多符号的EVM平均值,即EVM结果是所有帧EVM有效值(RMS)的平均值。 3.优化仪表的EVM测试性能

在大多数WLAN应用中,WLAN基带处理器对信号进行调制,在片内或片外的D/A转换之后,提供I(同相)与Q(正交)的模拟输出信号,由随后的RF部分进行上变频。WLAN基带处理器的操作通常不是造成发射信号恶化的原因,信号恶化主要是由于经PCB设备和RF电路的模拟信号处理造成的。元器件变化、PCB印刷线路布局缺陷、晶体振荡器与频率合成器的不稳定性、功率放大器的失真以及寄生信号的存在都会导致发射信号质量下降。

EVM将表征发射RF信号的许多参数简化为单一参数。在生产线测试中,EVM可以简化发射机的质量保证,并提高测试吞吐量。而在设计过程中,EVM则是一个很有价值的总体信号质量指标,特别是在与其它参数的测量结果组合使用时,可以用来排查I/Q失衡(幅度、相位、群延迟)、相位噪声、寄生信号与瞬态效应、信号压缩等因素带来的信号质量恶化。

仪表测试的EVM指标不仅包括发射信号本身的EVM,也包括仪表引入的寄生EVM.为了减小测量仪表的系统误差,用作分析和发射WLAN信号的仪表需要有优秀的I/Q幅度精度和相位平衡、直流偏置、相位噪声和模数量化噪声性能。WLAN芯片厂家通常建议客户选择的EVM测试仪表有大于10dB的测试余量,比如802.11ac草案中MCS9(256QAM,5/6编码率)的EVM指标是-32dB,那么仪表的寄生EVM建议小于-42dB.EVM指标测试过中需要注意的设置包括:

a.参考电平设置。仪表参考电平设置决定了前端衰减器和功放的参数,也决定了进入混频器等电路的信号电平。底噪和非线性失真对EVM结果的影响决定了参考电平设置的最小和最大值。信号电平太低时,噪声限制了信噪比和降低了EVM.信号电平太高时,信号失真带来载波间干扰降低了EVM.更改输入信号电平和带宽等参数时,都应该重新设置参考电平。

b.仪表本振相位噪声对EVM分析结果有明显的影响。仪表常用的恒温晶体振荡器(OCXO)室温下通常需要10分钟左右稳定时间。建议仪表预热或工作一段时间以后再进行EVM测试。

c.杂散信号影响。杂散信号会干扰频带内的信号,以及影响测量的动态范围。当输入信号电平比较低时,外界环境干扰对EVM测试结果的影响会比较大。通常建议被测设备在电波暗室或屏蔽箱内进行测试。

EVM的测试结果与测量中相位捕获、信道估计、符号时钟捕获、频率同步、幅度捕获等设置相关。这些设置在研发阶段能帮助工程师发现和分析许多影响信号质量的问题。但同时也常常引起EVM测试结果不一致的困惑。在下一节将结合IQxel的EVM分析功能来介绍不同设置对EVM结果的影响。

4. IQxel在EVM测量中的灵活设置

莱特波特公司提供的IQxel仪表是目前主流的的WLAN测试仪,被芯片厂家、设计公司、生产制造企业和检测认证机构广泛采用。凭借出色的性能、灵活的配置和创新的设计,IQxel占据802.11ac信号测试仪表90%以上的市场份额。IQxel仪表中对于EVM指标测试既有符合IEEE规范的默认设置,也有满足研发用户的多种设置,帮助用户分析和发现引起信号质量恶化的原因。

针对IEEE802.11标准中不同的调制方式,IQxel在分析WLAN信号EVM时,有直接序列扩频(DSSS)和正交频分复用(OFDM)两种标准选择。WiFi 802.11a/g/n/ac标准对应的OFDM调制信号EVM分析包括如下设置选项:

表1. IQxel分析OFDM信号EVM指标时各种设置 用户经常会报告不同仪表的EVM测试结果不一致。首先需要检查不同仪表分析EVM指标时的设置。建议采用IEEE标准规定的方法进行设置,只对前导码进行均衡和导频相位进行捕获。或者参照WLAN芯片厂家推荐的方法设置。

IQxel分析的EVM结果中有全部导频子载波的EVM(EVM Pilot),全部数据子载波的EVM(EVM Data)和全部子载波的EVM平均值,以及每个子载波全部符号的误差矢量幅度平均值与OFDM子载波数的关系图(EVM vs.Subcarrier Plot)和帧数据内所有子载波每个符号的EVM平均值(EVM vs. Symbol Plot)。用户可以查看WLAN信号分析中所有需要的EVM指标。EVM通常用dB表示,也有用百分数表示,两者的关系EVMdB=20log(EVM%)。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭