射频通过式功率计的应用
扫描二维码
随时随地手机看文章
通过式功率计的历史
早在1952年,BIRD公司的创始人J. Raymond Bird发明了通过式功率计原理——Thruline®,从此,通过式功率测量法成为射频功率测量的工业标准一直至今。通过式功率测量法的原理如下:
图1、通过式功率测量法
通过式射频功率计的典型代表产品是BIRD公司的43型,它实际上是一种信号激励装置,采用了一个无源的二极管射频传感器。在同轴线的一侧装有一个定向的,半波二极管检测波电路,并将其接到一个已校正的表头以读出有效值功率。检波电路与传输线通过介质耦合,并根据置于传输线旁的传感器的方向取样出正向和反射功率。
通过式功率计的应用
射频功率的测量
与终端式功率计不同的是,通过式功率计真实的反映了一个发射系统中各个截面的正向功率和反射功率。
终端式功率计的输入阻抗是标准的50Ω。在功率测量中,终端式功率计替代了发射机的负载,也就是说,终端式功率计将发射机的负载理想化了。所以说,终端式功率计所测得的结果是发射机在理想负载时的输出功率;如果发射天馈系统的匹配情况良好,则这个结果可以真实反映发射系统的输出情况;如果发射天馈系统的匹配不好(如VSWR>1.5),则终端式功率计不能真实反映发射系统的情况。
而通过式功率计则不同,它实际上是在传输线一侧放置了一个耦合探头,与发射机的工作波长相比,功率计传感器的电长度几乎可以忽略不计。所以只要将通过式功率计置于发射系统的某个截面,那么得出的结果是这个截面的正向和反射功率(VSWR)。
对于无线电运营商和制造商,通过式功率测量法是很有意义的,见图2。
图2、典型的发射系统
在一个典型的发射系统中,将通过式功率计置于不同的截面将会得到不同的测试结果:
位置④——发射机的输出端,可以考核发射机的输出功率是否在设计的范围内;这是无线电设备研发和维护工程师所关心的。
位置③——天线的输入端,可以确定发射机真正辐射到空间的信号究竟有多大;这是网络规划和优化工程师所关心的。
位置②——可以检查发射系统在某个位置的匹配情况,这是设备维护工程师所关心的。
测量无源器件的插入损耗
用二台功率计可以十分准确的测出一个无源器件的插入损耗,其精度和网络分析仪的测试结果相当(见图3)。
这种测量方法的基本原理是替代法。即先将二台功率计用一只精密的射频转接器(如Nf-Nf)直接连接,再用被测器件替代射频转接器,分别读出4个功率读数,从而计算出被测器件的准确插入损耗值。详情参见《用功率计测量插入损耗》一文(文件号:03TF-001-v1.0-AN)。
图3、功率计法测量无源器件的插入损耗
用这种方法可以准确的测出一个蜂窝基站从发射输出到天线输入的全部插入损耗,这对于基站的维护是有益的。虽然用网络分析仪也可以单端测量长电缆的插入损耗,但是网络分析仪必须在同一种介质下测量,而且要准确设定电缆的相速度,否则会产生附加的测试误差;而用功率计法就不需要知道这些参数,它只是把整个系统(包括跳线、主馈线,避雷器,定向耦合器等)一并当作一个二端口网络来对待。
测量功率放大器的线性
用功率计除了可以测量放大器的功率,增益等指标外,还可以测量放大器的线性。
在现代通信系统中,设计工程师们更关心放大器的线性指标而不是效率指标,这是与系统的工作特性有关的,尤其是在宽带通信系统(如CDMA/WCDMA基站和直放站)中。
放大器的线性通常用IM3来表征,这需要用信号源和频谱分析仪来搭建一个复杂的测试电路来完成。用通过式功率计也可以测量放大器的线性度,而且方法很简单:分别测出放大器输入和输出端的互补积累分布函数(CCDF),这二个数值越吻合,说明放大器的线性越好。
在用功率计法测量放大器的线性的同时,还能测量放大器的增益和输出功率;这对于生产线上的快速测试十分有意义。另外放大器的线性度直接影响到发射机输出频谱的纯净程度,因此也是无线电系统工程师的关注点。
测量功率放大器的峰值因子(峰均功率比)
和白噪声一样,放大器的平均功率只是其重要参数之一。鉴于多载频和数字调制系统的统计特性,峰值/平均值功率比是十分重要的参数。例如,8-VSB的数字调制信号的峰均功率比通常为6dB,而CDMA调制信号则可高达10dB;如此高的峰值功率可能会导致放大器的饱和,这将造成数字信号的误码,所以正确测量放大器的峰均功率比对于放大器的研制和生产有着重要意义。