当前位置:首页 > 测试测量 > 测试测量
[导读]R&S ZVx-K6选件是一种概念全新的技术,并且获得了多项专利。该公司已经在多种有源器件上进行了实验验证,发现该方法得出的增益压缩点结果和“虚拟”方法相比,确实有一定差距。

传统的矢量网络分析仪 VNA(vector network analyzer)在测量平衡/差分器件时,通常采用所谓的“虚拟”方法:网络分析仪用单边(single-ended)信号激励被测件,测出其不平衡(unbalanced)参数,然后网络分析仪通过数学计算,把不平衡参数转换成平衡参数。该方法对于分析小信号(线性)状态下的有源/无源器件已经够用。但是当器件处于大信号(非线性)工作状态时,该方法测试结果的精度就受限了。尽管人们想出了很多方法克服这个问题:例如采用“理想的”宽带功分器或耦合器,但是这些方法都无法进行全系统校准。幸运的是罗德与施瓦茨公司(Rohde & Schwarz)的多端口网络分析仪ZVA和ZVT,通过添加新的选件,就可以实现精确的宽带差分器件测量,并且操作方便。

R&S ZVx-K6选件是一种概念全新的技术,并且获得了多项专利。该公司已经在多种有源器件上进行了实验验证,发现该方法得出的增益压缩点结果和“虚拟”方法相比,确实有一定差距。图1就是一个典型的例子,这个实验采用R&S ZVA40网络分析仪,在两种模式下分别测试一个2GHz的

微波单片集成MMIC(monolithic-microwave-integrated-circuit)放大器。可以看出,在小信号(线性)的情况下,两种方法的测量结果一样,但是在放大器处于压缩状态(大信号)的情况下,两种方法的测量结果有明显差异。采用真差分激励测得的增益,比采用虚拟方法的结果提前4dB出现压缩,并且最大增益的测量结果也要低0.5dB。

这种新技术的改进(优点)有如下三方面:

1.目前差分放大器在手机、智能电话、数据卡和其他移动设备中得到了广泛的应用。但是这些器件目前大多采用虚拟方法来测试(由于以前还没有真差分测试技术)。也就意味着目前测得的器件特性并不正确。

2.如果器件实际出现压缩的功率,比厂商标注的要低(因为厂商目前都用虚拟方法测试),也就意味着现在的很多放大器都处于压缩(过载)状态下工作,其实际互调产物要比设计值高很多。

3.采用虚拟方法设计生产手机的厂商,目前必须“功率回退”技术,才能达到理想的线性功率性能。

然而采用“功率回退”技术意味着需要更多(或输出功率更高)的有源器件,才能达到指定的输出功率,可能需要重新设计整个发射机部分。

当然,如果能更精确的测试出平衡器件的特性,器件、系统厂商就可以在产品出厂之前(而不是在使用中出现问题之后),设计出理想的性能和工作条件。

用传统的网络分析仪测量差分(平衡)器件时,仪器只能产生单端激励,通过数学计算,把测得的单端S参数转化为差分S参数。仪器并没有用差分信号去激励被测件,而是把它当成一个单端器件来测量的。然后使用测得的单端S参数,计算出混合模S参数。由于没有使用真实的差分信号去激励被测件,这种虚拟方法的精度难以保证。这种方法的精度在小信号(线性)状态下尚可,但是在大信号(非线性)状态下,难以保证。

当有源器件处于大信号激励下,其非线性特性逐步显露(通常用1dB或3dB压缩点来衡量),这时采用传统虚拟方法测量有源器件,就很难得到理想的结果。例如用虚拟法测得某个放大器的1dB压缩点比实际值偏高,如果用这个参数去指导设计,则设计出的放大器就可能会于过载状态,从而产生很多非线性产物。然而,以前网络分析仪只能提供虚拟方法,因为网络分析仪控制其输出的两路信号源的幅度和相位的技术极其复杂。

罗德与施瓦茨公司开发的这项新技术,首次实现了网络分析仪输出真正差分信号,用来激励射频微波平衡器件,其最高频率高达40GHz。该方法基于专利控制的技术,控制两路内部源的幅度和相位,以及专利的差分矢量校准技术。R&S ZVA(2、3、4端口网络分析仪)或该公司的ZVT(多端口网络分析仪)内部的两路源可以产生幅度相同,相位差为0度或180度的信号,其相位差的不确定度小于1度。用这组差分信号激励被测件,可以直接测出差模或共模响应,经过矢量修正,直接得出混合模S参数。

传统的虚拟方法工作原理如下:在每一个频点,网络分析仪的1端口输出一个单端激励,在2、3、4端口测量传输分量,在1端口测量反射分量,然后分别再用2、3、4端口输出单端激励信号,重复上述测试。可以得出16个单端S参数(S11到S44),再用这16个参数计算出混合模S参数Sxxyy。但是对于非线性器件,仪器的1端口和2端口不能输出激励信号,因此不能再现被测件在实际工作状态下的性能。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭