当前位置:首页 > 测试测量 > 测试测量
[导读]在无线通信高度发达的今天,干扰绝对是不受欢迎的东西,它可能会导致噪声、手机通话中断、通信受到干扰。在蜂窝网络中,干扰实际上是网络的一部分。虽然当前越来越多的网络内置了干扰检测功能,但这些工

 

在无线通信高度发达的今天,干扰绝对是不受欢迎的东西,它可能会导致噪声、手机通话中断、通信受到干扰。在蜂窝网络中,干扰实际上是网络的一部分。虽然当前越来越多的网络内置了干扰检测功能,但这些工具通常效果不大,因为它们只针对几种信号,可能只能在一条通道上测量问题的影响。

频谱分析仪是工程师非常信赖的工具,用以测量和识别干扰源。市场上有许多不同类型的频谱分析仪,但许多人首选电池供电的小型频谱分析仪,因为他们需要能够自由移动,并把来自多个位置的数据关联起来。

搜寻干扰频率

在搜寻干扰时,第一个挑战是确定是否可以测量干扰信号。一般来说,受扰接收机很容易确定,这也是第一个要查看的地方。挑战在于,无线接收机要能检测到非常小的信号。因此,频谱分析仪必须设置成接近模拟受扰接收机的灵敏度,才能“看到”接收机“看到”的东西。例如,普通LTE接收机的灵敏度约为-120dBm。也就是说,接收机通道上任何大于-120dBm的射频污染都会影响接收机的操作。

频谱分析仪有两种控制功能可以调节灵敏度:基准电平(RefLvl)和解析带宽(RBW)。挑战在于,在“空中”(OTA)进行测量时,基准电平必需保持得相当高(-30dBm),这样在测量所有RF能量时,频谱分析仪才不会过载。

在大多数频谱分析仪中,RBW控制功能会根据用户配置的频宽自动设置。在OTA测量中,应降低RBW值,以查看可能影响受扰接收机的小信号。这种组合导致大多数电池供电的频谱分析仪的扫描速率非常低,也就是说,其不可能看到导致干扰的小的间歇性瞬态信号。

实时频谱分析仪解决了这个问题,它能够使用RBW较窄的滤波器测量频谱,速度要快于基本扫频分析仪。图1显示了LTE信号在空中传送(OTA)时的结果。在这种情况下,频宽被设置成40 MHz,默认RBW为300 kHz。注意很难确定画面中心的辐射。如果有一个窄带(< 300 kHz)干扰源,那么这种设置几乎不可能看得到干扰。

图1:LTE信号OTA结果实例。

图2是使用1kHz RBW滤波器的相同设置。在这种情况下,很明显LTE通道和有效扫描时间仅提高到40 ms。这是使用实时频谱分析仪(RTSA)测量无线通道干扰的首要好处之一。这类仪器原本十分昂贵,而且必须固定在桌面上使用,但现在市场上已经有一款电池供电、基于USB的经济型实时频谱分析仪,使RTS成为搜寻干扰的实用选择。

图2:采用1kHz RBW滤波器的实时频谱分析仪提高了查看LTE信号的能力。

测量干扰的频率

传统上,工程师使用频谱分析仪器提供的各种跟踪模式,来分析关心的RF信号的特点,常见的有峰值保持模式、平均模式和最小值保持模式。即使采用这些跟踪模式,工程师仍很难确定信号的发生频次,或确定信号是否与相同频宽中其他信号有什么关联。

RTSA为这个问题提供了解决方案:具有余辉效应的快速频谱显示器。记住,在实时频谱分析仪中,对最大实时频宽以下的任何频宽,仪器都不会进行扫描,这意味着它能够每秒测量数万次频谱。但频谱不能显示得那么快。为解决这个问题,我们开发了配有余辉显示器的频谱分析仪,如图3所示。

图3:实时频谱分析仪显示器显示的信息量要远远超过传统显示器。

余辉显示器(或数字荧光显示器)会逐点追踪能量被测量的频率。像素颜色表示信号存在的频次。在温度定标中,红色表示信号经常出现,蓝色则表示信号不经常出现。快速频谱测量与余辉相结合,可以更简便地识别偶发事件。

在使用实时显示时,应注意选择RBW滤波器。与普通频谱显示一样,RBW滤波器的选择大大影响着频谱测量的速度。RTSA的主要指标之一是侦听概率(POI)。这个指标决定着仪器保证能检测到的最短信号时长。选择窄RBW会改变测量的POI,这是要知道的一个重要因素。

显示全部信号信息

与基本频谱显示器相比,尽管余辉显示器可以获得多得多的信息,但它并不能显示全部信号信息。在现代无线通信中,许多协议采用了某种形式的空闲通道评估。从本质上看,这些无线电能够确定通道忙碌程度,只在没有其他信号使用这个频率时才传送信号。即使快速余辉显示器也不能显示两个信号之间的关系。为确定信号的时序,我们必需使用三维频谱图功能,如图4所示,绘制频谱数据随时间变化情况,确定信号活动的频次。

图4:三维频谱图可以记录长期频谱及播放问题周期。

三维频谱图是一种瀑布式显示画面,绘制频谱相对于时间的活动情况。在普通频谱显示画面中,开始频率在左,结束频率在右。时间是Y轴,颜色表示信号幅度:红色表示最高幅度,黑色表示最低幅度。三维频谱图由余辉显示器中峰值检测到的数据组成,累积的频谱数据量由用户确定。通过这些控制功能,用户可以记录长期数据(几个小时),然后导出和共享结果。这特别适合存在很难处理的干扰问题,且需要长时间监测频谱的情况。在处理互调制问题时,三维频谱图可以帮助确定基本组合元素。

请记住,在RTSA中,可以立即测量整个频宽的频谱信息。也就是说,我们可以使用这些数据,目测实现载波相关,确认源载波和互调制产物之间的时序关系。

轻松搜寻干扰!

干扰永远是无线通信领域中的不速之客。为解决这个棘手的问题,最好的方案是使用实时频谱分析仪成为好的猎手,不管干扰信号多么难以捉摸,实时频谱分析仪的显示器都足以胜任工作,为您找到和显示干扰信号。

 

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭