全自动自校准电导率测量系统
扫描二维码
随时随地手机看文章
随着水质监测变得日益重要,人们开发了多种相关传感器和信号调理电路。水质的测量指标包括细菌数、pH值、化学成分、浊度和电导率。所有水溶液都在一定程度上导电。向纯水中添加电解质,例如盐、酸或碱,可以提高电导率并降低电阻率。本文重点讨论电导率测量。
纯水中不包含大量电解质,当样本处于一定的电压下时,只能传导很小的电流 — 因此它的电导率很低。相反,如果样本中存在大量电解质,将会传导更多电流 — 它的电导率更高。
我们更多从电阻而不是电导的角度来看待导电能力,但两者互为倒数。材料或液体的电阻率ρ定义为:当立方体形状的材料相对面完全导电接触时,该材料的电阻。其他形状材料的电阻R可按以下方式计算:
R = ρ L /A (1)
其中:
L 是接触面间距。
A 是接触面积。
电阻率的测量单位为? cm。当接触1 cm &TImes; 1 cm &TImes; 1 cm 立方体的向对面时,1 ? cm材料的电阻为1 ?。
电导是电阻的倒数,电导率是电阻率的倒数。电导的测量单位为西门子(S),电导率的测量单位为S/cm、mS/cm或μS/cm。
在本文中,Y为电导率的通用符号,测量单位为S/cm、mS/cm或μS/cm。但在很多情况下,为方便起见,我们会省略距离项,电导率仅表示为S、mS或μS。
使用电导池测量电导率电导率测量电路通过连接到沉浸在溶液中的传感器(称为电导池)来测量电导率,如图1所示。
图1.电导池与电导率测量电路的连接(EVAL-CN0359-EB1Z)
测量电路对传感器施加交流电压,并测量产生的电流大小,电流与电导率相关。由于电导率具有很大温度系数(最高达到4%/°C),因此电路中集成了必需的温度传感器,用于将读数调整为标准温度,通常为25°C (77°F)。对溶液进行测量时,必须考虑水本身的电导率的温度系数。为了精确地补偿温度,必须使用额外的温度传感器和补偿网络。
接触型传感器通常包括相互绝缘的两个电极。电极通常为316型不锈钢、钛钯合金或石墨,具有特定的大小和间距,以提供已知的电极常数。从理论上说,1.0/cm的电极常数表示两个电极,每个电极面积为1 cm2,间距为1 cm。对于特定的工作范围,电极常数必须与测量系统相匹配。例如,如果在电导率为1 μS/cm的纯水中使用电极常数为1.0/cm的传感器,则电导池的电阻为1 MΩ。相反,相同电导池在海水中的电阻为30 Ω。由于电阻变化范围过大,普通仪器很难在单一电极常数情况下精确测量此类极端情况。
对1 μS/cm溶液进行测量时,电导池配置了大面积电极,相距很小的电极间距。例如,对于电导池常数为0.01/cm的电导池,其电导池电阻测量值约为10 k?,而非1 MΩ。精确测量10 k?比测量1 M?更加容易;因此,对于超纯水和高电导率海水,使用具有不同电极常数的电导池,测量仪表可在相同的电导池电阻范围内工作。
电极常数K定义为电极之间距离L与电极面积A的比值:
K = L/A (2)
然后,仪器测量电导池电导Y:
Y = I/V (3)
液体电导率YX可计算如下:
YX = K × Y (4)
有两类电导池:一类采用两个电极,另一类采用四个电极,如图2所示。电极通常称为极。
图2.双极和四极电导池。
双极传感器比较适合低电导率测量时使用,比如纯净水和各种生物与医药液体四极传感器更适合高电导率测量,比如废水和海水分析。
双极电导池的电极常数范围大致是从0.1/cm到1/cm,而四极电导池的电极常数范围是从1/cm到10/cm。
四极电导池可以消除电极极化和电场效应引起的误差;这些误差可能会干扰测量。
电极的实际配置可以是平行环、同轴导体等,而不会是如图2所示的简单平行板。
无论电导池为何种类型,都不可在电极上施加直流电压,因为液体中的离子会在电极表面聚集,从而导致极化效应并产生测量误差,更有可能损坏电极。
若采用同轴传感器,则应当注意传感器的屏蔽。屏蔽电极必须连接与盛放液体的金属容器相同的电位。如果容器接地,则屏蔽电极必须连接电路板的接地端。
另外需要保证激励信号不要超过电导池激励电压或激励电流的额定值。电路允许的可编程激励电压范围为100 mV至10 V,并且R23 (1 kΩ)串联电阻将最大电导池电流限制为10 mA。
电路描述图3中的电路是一个完全独立运行、微处理器控制的高精度电导率测量系统,适用于测量液体的离子含量、水质分析、工业质量控制以及化学分析。
经过仔细选择的精密信号调理元件组合可在0.1 μS至10 S(10 M?至0.1 ?)电导率范围内提供优于0.3%的精度,且无需校准。
针对100 ?或1000 ?铂(Pt)电阻温度传感器(RTD)提供自动检测功能,允许以室温为参考测量电导率。
系统支持双线式或四线式电导池以及双线式、三线式或四线式RTD,以提高精度和灵活性。
该电路能以极小的直流失调产生精确交流激励电压,从而避免电导电极上的极化电压造成损害。用户可编程控制交流激励信号的幅度和频率。
创新的同步采样技术可将激励电压和电流的峰峰值幅度转化为直流值,这样不仅提升了精度,同时简化了内置于精密模拟微控制器的双通道24位Σ-Δ型ADC对于信号的处理。
采用LCD显示器和编码器按钮实现直观的用户界面。该电路可以按需使用RS-485接口实现与PC的通信,并采用4 V至7 V单电源供电。
电导池的激励方波通过使用ADuCM360 微控制器的PWM输出在+VEXC和?VEXC电压之间切换ADG1419产生。方波必须具有精确的50%占空比和极低的直流失调电压。哪怕很小的直流失调电压都会在一段时间之后损坏电导池。
图3.高性能电导率测量系统(原理示意图:未显示所有连接和去耦)。
+VEXC和?VEXC电压由ADA4077-2运算放大器(U9A和U9B)产生,这两个电压的幅度由ADuCM360的DAC输出控制,如图4所示。
图4.激励电压源。
ADA4077-2的失调电压典型值为15 μV(A级),偏置电流为0.4 nA,失调电流为0.1 nA,输出电流最高为±10 mA,压差低于1.2 V。U9A运算放大器的闭环增益为8.33,可将ADuCM360的内部DAC输出(0 V至1.2 V)转换为0 V至10 V范围的+VEXC电压。U9B运算放大器反转+VEXC,产生?VEXC电压。选择R22,使得R22 = R24||R27,以便消除一阶偏置电流。由U9A的15 μV失调电压产生的误差约为(2 × 15 μV) ÷ 10 V = 3 ppm。因此,反相级产生的主要误差是R24和R27之间的电阻匹配误差。
ADG1419是一个2.1 ?导通电阻单刀双掷模拟开关,在±10 V范围内的导通电阻平坦度为50 m?,非常适合从±EXC电压产生对称方波信号。ADG1419导致的对称误差通常为50 m? ÷1 k? = 50 ppm。电阻R23将通过传感器的最大电流限制为10 V/1 k? = 10 mA。
施加到电导池上的电压V1采用AD8253仪表放大器(U15)进行测量。U15正输入由ADA4000-1 (U14)缓冲。选择ADA4000-1是因为它具有5 pA低偏置电流,可最大幅减少低电导率相关的低电流测量误差。AD8253的负输入不需要缓冲。
同步采样级可以消除U14和U15的失调电压,从而不影响测量精度。
U15和U18采用AD8253 10 MHz、20 V/μs、可编程增益(G = 1、10、100、1000)仪表放大器,增益误差低于0.04%。AD8253压摆率为20 V/μs,0.001%建立时间为1.8 μs(G = 1000)。其共模抑制典型值为120 dB。
U19 (ADA4627-1)级是一个精密电流-电压转换器,可将流过传感器的电流转换为电压。ADA4627-1失调电压为120 μV(典型值,A级),偏置电流为1 pA(典型值),压摆率为40 V/μs,0.01%建立时间为550 ns。这款器件的低偏置电流和低失调电压性能使其成为该级的理想选择。120 μV失调误差产生的对称误差仅为120 μV/10 V = 12 ppm。
U22A和U22B(AD8542)缓冲器分别为U18和U15仪表放大器提供1.65 V基准电压。
下面介绍电压通道信号路径上的其余器件(U17A、U17B、U10、U13、U12A和U12B)。电流通道(U17C、U17D、U16、U21、U20A和U20B)的工作情况相同。
ADuCM360能产生PWM0方波开关信号以供ADG1419开关使用,并且还能产生PWM1和PWM2同步信号供同步采样级使用。电导池的电压和三个时序波形如图5所示。
图5.电导池电压和采样保持时序信号。
AD8253仪表放大器(U15)输出驱动两个并行的采样保持电路;这两个电路由ADG1211开关(U17A/U17B)、串联电阻(R34/R36)、保持电容(C50/C73)以及单位增益缓冲器(U10/U13)组成。
ADG1211是一个低电荷注入、四通道单刀单掷模拟开关,工作电源电压为±15 V,输入信号最高可达±10 V。开关导致的最大电荷注入为4 pC,产生的电压误差仅为4 pC ÷ 4.7 μF = 0.9 μV。
PWM1信号使U10采样保持缓冲器可在传感器电压的负周期采样,然后保持直至下一个采样周期。因此,U10采样保持缓冲器输出等于传感器电压方波负幅值对应的直流电平。
类似地,PWM2信号使U13采样保持缓冲器可在传感器电压的正周期采样,然后保持直至下一个采样周期。因此,U13采样保持缓冲器输出等于传感器电压方波正幅值对应的直流电平。
采样保持缓冲器(ADA4638-1)的偏置电流典型值为45 pA,而ADG1211开关的漏电流典型值为20 pA。因此,4.7 μF保持电容的最差情况漏电流为65 pA。对于100 Hz激励频率而言,周期为10 ms。由于65 pA漏电流而导致的半周期(