当前位置:首页 > 测试测量 > 测试测量
[导读] 在高速串行数据的测试中,抖动的测试非常重要。在串行数据的抖动测试中,抖动定义为信号的边沿与其参考时钟之间的偏差。对于抖动测量值的量化,通常有抖动的峰峰值和有效值这两个参数。不过,抖动的峰峰

在高速串行数据的测试中,抖动的测试非常重要。在串行数据的抖动测试中,抖动定义为信号的边沿与其参考时钟之间的偏差。对于抖动测量值的量化,通常有抖动的峰峰值和有效值这两个参数。不过,抖动的峰峰值随着测量时间的增加,测量值不断变大,不能将抖动值与误码率直接联系起来,所以对于抖动测试,抖动的峰峰值并不是一个理想的指标来很衡量器件和系统的性能。
总体抖动(Total Jitter,简称Tj)为某误码率(Bit Error Ratio,简称BER)下抖动的峰峰值,在很多串行数据的规范中通常需要测量误码率为10e-12的Tj,简写为Tj@BER=10e-12。对于BER小于10e-8的Tj的测量,通常只有误码率测试仪BERT可以直接测量到。对于示波器,假设该高速信号为2.5Gbps的PCIe,单个bit的时长为Unit interval = 400ps,假设示波器采样率为20G采样率,则1个bit上包括了400ps/50ps = 8个采样点,一次分析1M个bit需要8M的存储深度,如果要测量10个比特的抖动,需要让示波器在8M的存储深度下扫描100次,由于示波器在8Mpts时计算抖动已经很耗时,重复100次的测试时间会非常长。所以示波器测量小于10e-12的误码率时的总体抖动必须通过某些算法来估算Tj。



图1:TIE抖动图示与抖动概率密度函数(PDF)

基于示波器求解抖动的算法通常在三个领域观察和分析,即时域、频域、统计域。比如TIE track即为TIE抖动在时域的函数;在频域分析抖动的频谱,可以计算周期性抖动Pj和随机抖动Rj;TIE直方图、Tj的概率密度函数(Probability Density Function,简称PDF)是在统计域来分析抖动。
对于总体抖动的计算,通常从统计域分析,即分析抖动的直方图、概率密度函数PDF和累计分布函数(Cumulative Distribution Function,简称CDF)。
概率密度函数PDF的定义为:对于实数随机变量X,任何满足下列条件的函数
都可以被定义为其概率密度函数 :
在下图2中简要描述了从TIE直方图生成PDF、CDF、浴盆曲线Bathtub curve的过程。
在第一步的图示中,X轴是抖动的值,Y轴是某个抖动值上的样本数量,示波器测量每个信号每个边沿与参考时钟的偏差(即TIE),统计在某个抖动值上边沿的数量,得到TIE的直方图;
第二步中对直方图做归一化,即直方图中每个方柱子的数量除以样本总数,得到每个抖动值的发生概率,在这一步中即可得到TIE的概率密度函数PDF;



图2:抖动的直方图与PDF
在第三步中,对PDF的直方图从左右两边向中央进行积分。假定信号边沿相对理想位置超出距离x时,可能导致误码,误码率是对PDF从x到∞或-∞的积分(当x大于0时为∞,小于0时为-∞):BER(x) =
=1-CDF(x)。然后,对Y轴取对数后如下图3中深蓝色直方图。所示,由于测试样本较少,最矮的直方图的概率(即误码率)仅1%=10e-2,要计算10e-12的BER,需要对现有的BER直方图进行外插值;
在第四步中(如下图3中Step4的图片)显示了外插值后的BER图,绿色的柱子是外插值得到的,在图上测量10e-12时抛物线形状的BER曲线的内侧的宽度,即可得到Tj;
第五步中把外插值后的BER图(类似于抛物线的曲线)以x=0分割成两条曲线后,设定横轴的最大值为0.5UI(Unit interval,即一个比特的宽度),最小值为-0.5UI,即水平方向正好一个UI的宽度,把Step4中生成的BER图左半部分的曲线右移靠最右边,右半部分的曲线左移靠最左边,即可得到浴盆曲线Bathtub curve。



图3:抖动的PDF/BER/CDF与浴盆曲线

当然,在上述的Tj求解过程中,除了BER图中的外插值部分,其他都是基于实测结果计算的,所以BER图的外插值是示波器的抖动分析算法中最关键的一部分。外插值算法的模型精准度决定了Tj计算的精度。由于外插值算法是对实测的BER/CDF图中尾部进行拟合和外插值,在国外的相关文献中称为tail-fit算法。
在业界除了对BER图进行外插值以获取小误码率的Tj这种方法外,另外一种方法是对PDF进行外插值,得到BER<10e-12的PDF,然后积分得到BER/CDF和浴盆曲线,从而算出Tj。两种算法分别称为PDF尾部拟合算法(tail-fit method for PDF)和BER/CDF尾部拟合算法(tail-fit method for the BER/CDF)。
下面简要介绍一种tail-fit method for PDF方法。如下图4所示:
第一步统计TIE分布的直方图,测量的样本数量越多,推算的Tj越准确,在下面的TIE直方图中包括了102.6k个样本;
第二步对TIE直方图的Y轴(即样本数量)取对数,把Y坐标变为对数坐标,对数运算后直方图的轮廓近似为二次方程曲线;
第三步使用最小二乘法对两个尾部进行拟合;
第四步对直方图的尾部进行外插值,归一化后可得到BER=10e-16 的概率密度函数;
第五步对每一个偏移值x进行积分:BER(x) =
=1-CDF,得到BER/CDF曲线;
第六步测量某误码率下CDF曲线的宽度即为总体抖动Tj。




图4:PDF的尾部拟合算法计算总体抖动

在尾部拟合(tail-fit)算法中,前提是测量的抖动样本足够多,抖动直方图中包括了很多小概率的抖动事件,通常这些小概率的抖动样本分布在直方图的尾部,在尾部有了足够的样本后才可以准确的进行尾部拟合与外插值。
总结:
本文简要介绍了总体抖动的直方图、概率密度函数、误码率BER与累计分布函数CDF、浴盆曲线,以及两种tail-fit算法的处理步骤,后续的文章将介绍力科独特的抖动求解算法——NQ-Scale算法以及串行数据分析仪SDA中的几种抖动分解方法。
参考文献:
1, Jitter, Noise, and Signal Integrity at High-Speed, Mike Peng Li
2, Fibre Channel – Method Jitter and Signal Quality Specification – MJSQ, T11.2/Project 1315-DT/Rev 14.1, June 5, 2005.


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭