当前位置:首页 > 测试测量 > 测试测量
[导读] 中心议题: 用示波器进行电源噪声测试 解决方法: 测量时让波形占满屏幕可有效减少量化误差 需要选择合适的探头 测量小电源噪声推荐使用50欧的输入阻抗 当今的电子产品,信号速度越来越快,集成电路芯片

中心议题: 用示波器进行电源噪声测试 解决方法: 测量时让波形占满屏幕可有效减少量化误差 需要选择合适的探头 测量小电源噪声推荐使用50欧的输入阻抗 当今的电子产品,信号速度越来越快,集成电路芯片的供电电压也越来越小,90年代芯片的供电通常是5V和3.3V,而现在,高速IC的供电通常为2.5V, 1.8V或1.5V等等。对于这类电压较低直流电源的电压测试(简称电源噪声测试),本文将简要讨论和分析。

在电源噪声测试中,通常有三个问题导致测量不准确:
1.示波器的量化误差;
2.使用衰减因子大的探头测量小电压;
3.探头的GND和信号两个探测点的距离过大;

示波器存在量化误差。实时示波器的ADC为8位,把模拟信号转化为2的8次方(即256个)量化的级别,如果显示的波形只占屏幕很小一部分,则增大了量化的间隔,减小了精度。准确的测量需要调节示波器的垂直刻度(必要时使用可变增益),尽量让波形占满屏幕,充分利用ADC的垂直动态范围。图一中蓝色波形信号(C3)的垂直刻度是红色波形(C2)四分之一,对两个波形的上升沿进行放大(F1=ZOOM(C2), F2=ZOOM(C3)),然后对放大的波形作长余辉显示,可以看到,右上部分的波形F1有较多的阶梯(即量化级别),而右下部分波形F2的阶梯较少(即量化级别更少)。如果对C2和C3两个波形测量一些垂直或水平参数,可以发现占满屏幕的信号C2的测量参数统计值的标准偏差小于后者的。说明了前者测量结果的一致性和准确性。图一 示波器ADC的量化误差
通常测量电源噪声,使用有源或者无源探头,探测某芯片的电源引脚和地引脚,然后示波器设置为长余辉模式,最后用两个水平游标来测量电源噪声的峰峰值。这种方法有一个问题是,常规的无源探头或有源探头,其衰减因子为10,和示波器连接后,垂直刻度的最小档位为20mV,在不使用DSP滤波算法时,探头的本底噪声峰峰值约为30mV。以DDR2的1.8V供电电压为例,如果按5%来算,其允许的电源噪声为90mV,探头的噪声已经接近待测试信号的1/3,所以,用10倍衰减的探头是无法准确测试1.8V/1.5V等小电压。在实际测试1.8V噪声时,垂直刻度通常为5-10mV/div之间。

另外,探头的GND和信号两个探测点的距离也非常重要,当两点相距较远,会有很多EMI噪声辐射到探头的信号回路中(如图二所示),示波器观察的波形包括了其他信号分量,导致错误的测试结果。所以要尽量减小探头的信号与地的探测点间距,减小环路面积。
对于小电源的电压测试,我们推荐衰减因子为1的无源传输线探头。使用这类探头时,示波器的最小刻度可达2mV/div,不过其动态范围有限,偏移的可调范围限制在+/-750mV之间,所以,在测量常见的1.5V、1.8V电源时,需要隔直电路(DC-Block)后再输入到示波器。
如图三为力科PP066探头,该探头的地与信号的间距可调节,探头的地针可弹性收缩,操作起来非常方便。通过同轴电缆加隔直模块后连接到示波器通道上。也可以把同轴电缆剥开,直接把电缆的信号和地焊接到待测试电源的电源和地上。在图四中把SMA接头的同轴电缆的一段剥开,焊接到了电脑主板的DDR2供电的1.8V上面,测量其电源噪声。图四 测量某电脑主板DDR2的1.8V的电源噪声在电源噪声测试中,还存在示波器通道输入阻抗选择的争议。示波器的通道有DC50/DC1M/AC1M三个选项可选(对于高端示波器,可能只有DC50一个选项)。一些工程师认为应该使用1M欧的输入阻抗,另一些认为50欧的输入阻抗更合适。
在测试中我们发现:如果使用1倍衰减的探头测试,当示波器通道输入为1M欧时,通常其测量出的电源噪声大于50欧输入阻抗的。原因是:高频电源噪声从同轴电缆传输到示波器通道后,当示波器输入阻抗是50欧时,同轴电缆的特性阻抗50欧与通道的完全匹配,没有反射;而通道输入阻抗为1M欧时,相当于是高阻,根据传输线理论,电源噪声发生反射。这样,导致1M欧输入阻抗是测试的电源噪声高于50欧的。所以,测量小电源噪声推荐使用50欧的输入阻抗。
在准确测量到电源噪声的波形后,可以计算出噪声的峰峰值,如果电源噪声过大,则需要分析噪声来自哪些频率,这时,需要对电源噪声的波形进行FFT,转化为频谱进行分析。FFT中信号时间的长度决定了FFT后的频谱分辨率,在力科示波器中,支持业界最大的128M个点的FFT,能准确定位电源噪声来自于哪些频率。图五 测量某3.3V的电源噪声
如图五所示为某光模块的3.3V电源的噪声。其噪声的频谱最高点的频率为311.6KHz。这个光模块输出的1.25Gbps光信号的抖动测试中发现了同样的312KHz的周期性抖动。在图六中可以看到,把1.25G串行信号的周期性抖动分解后(Pj breakdown菜单),发现312KHz的周期性抖动为63.7皮秒,在眼图中也明显可以观察到抖动。通过这个案例说明,电源噪声很可能导致一些高速信号的眼图和抖动变差。对电源噪声进行频谱分析,能有效定位噪声的来源,指引调试的方向。图六:某1.25Gbps信号的抖动和眼图测试结果
在使用示波器测量电源噪声时,为了保证测量精度,需要选择足够的采样率和采集时间。

推荐采样率在500MSa/s以上,这样奈科斯特频率为250M,可以测量到250MHz以下的电源噪声。对于目前最普及的板级电源完整性分析,250M的带宽已足够。低于这个频率的噪声可以使用陶瓷电容、PCB上紧耦合的电源和地平面来滤波。而高于这个频率的只能在封装和芯片级的去耦措施来完成了。

波形的采集时间越长,则转化为频谱后的频谱分辨率(即delta f)越小。通常我们的开关电源工作在10KHz以上,如果频谱分辨率要达到100Hz的话,至少需要采集10ms长的波形,在500MSa/s采样率时,示波器需要500MSa/s * 10 ms = 5M pts的存储深度。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭