当前位置:首页 > 测试测量 > 测试测量
[导读]   本文解释了为什么ADC输入阻抗随频率而变化,以及为什么这是个电路设计难题;然后比较了确定输入阻抗的两种方法:利用网络分析仪测量法和利用数学分析方法计算法。本文还介绍了正确使用网络分析仪的过

  本文解释了为什么ADC输入阻抗随频率而变化,以及为什么这是个电路设计难题;然后比较了确定输入阻抗的两种方法:利用网络分析仪测量法和利用数学分析方法计算法。本文还介绍了正确使用网络分析仪的过程,并且提供了一个数学模型,其计算结果与实际测量结果非常接近。

  “有缓冲”或“无缓冲”

  考虑输入阻抗的影响时,设计人员一般可以在两类高速ADC之间选择:有缓冲和无缓冲(即采用开关电容)。虽然有许多不同的转换器拓扑结构可供选择,但本文讨论的应用仅涉及流水线架构。

  常用的CMOS开关电容ADC无内部输入缓冲器。因此,其功耗远低于缓冲型ADC。外部前端直接连接到ADC的内部开关电容采样保持(SHA)电路,这带来两个问题。

  第一,当ADC在采样与保持两种模式之间切换时,其输入阻抗会随频率和模式而变化。第二,来自内部采样电容和网络的电荷注入会将少量信号(与高频成分混合,如图1所示)反射回前端电路和输入信号,这可能导致与转换器模拟输入端相连的元件(有源或无源)发生建立(settling)错误。

  

  图1:此图反映了内部采样电容的时域电荷注入(单端)与频域电荷注入的对比关系。

  通常,当频率较低时(《100MHz),这类转换器的输入阻抗非常高(数千Ω左右);当频率高于200MHz时,差分输入阻抗跌落至大约200Ω。输入阻抗的虚部(即容性部分)也是如此,低频时的容抗相当高,高频时逐渐变小到大约1-2pF。“匹配”这种输入结构是个极具挑战性的设计问题,特别是当频率高于100MHz时。

  输入端采用差分结构很重要,尤其是对于频域设计。差分前端设计能够更好地对电荷注入进行共模抑制,并且有助于设计。

  采用带输入缓冲的转换器更便于设计。但不利的一面是这类转换器的功耗更高,因为缓冲器必须设计得具有高线性和低噪声特性。输入阻抗通常规定为固定的差分R||C阻抗。它由一个晶体管级进行缓冲,该级以低阻抗驱动转换过程,因此显著减小了电荷注入尖峰和开关瞬变。

  与开关电容型ADC不同,输入终端在转换过程的采样和保持阶段几乎无变化。因此,相比于无缓冲型ADC,其驱动电路的设计容易得多。图2为缓冲型和无缓冲型ADC的内部采样保持电路的结构简图。

  

  图2: 所示是无缓冲(a)和有缓冲(b)高速流水线ADC采样和保持电路的比较。

  转换器的选择可能很难,但如今的大部分设计都力求更低功耗,因此设计人员往往采用无缓冲型转换器。如果线性指标比功耗更重要,则通常选用缓冲型转换器。应当注意,无论选择何种转换器,应用的频率越高,则前端设计就越困难。单靠选择缓冲型转换器并不能解决所有问题。不过在某些情况下,它可能会降低设计复杂性。

转换器输入阻抗计算:测量方法

  表面上,这似乎非常棘手,但其实有多种方法可以测量转换器的阻抗。技巧在于利用网络分析仪来完成大部分琐碎工作,不过这种设备可能价格不菲。其优点是,当今的网络分析仪能够实现许多功能,像迹线计算和去嵌入等;对于阻抗转换等任务,它可以直接给出答案,而不需要使用外部软件。

  测量转换器的阻抗需要两块电路板、一台网络分析仪和一点“入侵”知识。第一块板焊接有ADC/DUT(待测器件),还焊接了其它元件以提供偏置和时钟(图3a)。第二块高速ADC评估板去除了前端电路,仅留连至转换器模拟输入引脚的走线(图3b)。

  

  图3: ADC的阻抗测量需要一块ADC评估板(a)且要将(a)中的前端去掉以用于测量(b)。

  第二块板除去了拆掉的前端电路的任何走线寄生效应。为此,必须使用与图3b所示一模一样但没焊装器件的电路裸板(图4a)。然后切割该裸板,只剩下前端电路走线进入ADC的模拟输入引脚的那部分(图4b)。

  

  图4: 为去掉被剥离的前端电路的导线寄生效应,应使用图3b所示的未焊件裸板(a)。该板的一个剪切版只允许前端电路导线连接到ADC的模拟输入引脚(b)。

  需要在转换器的引脚处安装一个连接器(通常会有足够的铜来完成这一任务)。在此阶段可发挥创造性以保证该连接器的牢固连接。通常,ADC的裸露焊盘(epad)可用于实现转换器本身到地的连接。假设前端电路的两条差分走线相等且对称,那么只需要使用其中的一条走线。该板用于实现“通过”测量,最后将从焊有器件电路板的测量结果中减去前一测量结果。

  下一步是对剪切后的小裸板(图4b所示的第二块板)实施“通过”测量,以测量S21(图5)。这个文件(应以touchstone格式或?.S2P文件形式保存)将成为去嵌入文件,用以从焊有器件的板中剔除所有走线寄生效应。

  

  图5: 图4b所示剪切板的去掉前端电路后的导线阻抗。

  然后只需以差分配置将焊件板(图3b所示的第一块板)连接到网络分析仪。应为该板提供电源和时钟,以确保能捕捉到测量过程中转换器内部前端设计的任何寄生变化。

  焊件板“上电”后,转换器看起来像是在典型应用中。在此测量中,将先前在切割裸板的各端口(各模拟输入走线)上测得的板寄生效应(图6)去掉。最终将从当前ADC测量结果中减去板寄生效应,仅在图中显示封装和内部前端阻抗(图7)。

  

  图6: 这条曲线说明了没去掉前端电路寄生效应的ADC阻抗。

  

  图7: 这条曲线说明了去掉前端电路寄生效应的ADC的阻抗。

转换器输入阻抗计算:数学方法

  现在我们通过数学方法分析一下,看花在实验室测量上的时间是否值得。可对任何转换器的内部输入阻抗实施建模(图8)。该网络是表述跟踪模式下(即采样时)输入网络交流性能的一个良好模型。

  

  图8: 跟踪模式(实施采样时)下,ADC内部输入网络的AC性能。

  ADC internal input Z:ADC内部输入阻抗

  通常,任何数据手册都会给出某种形式的静态差分输入阻抗、以及通过仿真获得的R||C值。本文所述方式所用的模型非常简单,目的是求出高度近似值并简化数学计算。否则,如果等效阻抗模型还包括采样时钟速率和占空比,那么很小的阻抗变化就可能使数学计算变得异常困难。

  还应注意,这些值是ADC内部电路在跟踪模式下采样过程(即对信号进行实际采样)中的反映。在保持模式下,采样开关断开,输入前端电路与内部采样处理或缓冲器隔离。

  推导该简单模型(图8)并求解实部和虚部:

  Z0 = R, Z1 = 1/s • C, s = j • 2 • π • f, f = frequency

  ZTOTAL = 1/(1/Z0 + 1/Z1) = 1/(1/R + s • C) = 1/((1 + s • R • C)/R)) = R/(1 + s • R • C)

  代换s并乘以共轭复数:

  ZTOTAL = R/(1 + j • 2 • π • f • R • C) = R/(1 + j • 2 • π • f • R • C) • ((1 – j • 2 • π • f • R • C)/(1 – j • 2 • π • f • R • C)) = (R –j • 2 • π • f • R2 • C)/(1 + (2 • π • f • R • C)2)

  求出“实部”(Real)和“虚部”(Imag):

  ZTOTAL = Real + j • Imag = R/(1 + (2 • π • f • R • C)2) + j • (–2 • π • f • R2 • C)/(1 + 2 • π • f • R • C)2)

  Real = R/(1 + (2 • π • f • R • C)2) Imag = (–2 • π • f • R2 • C)/(1 + (2 • π • f • R • C)2)

  这一数学模型与跟踪模式下的交流仿真非常吻合(图9和图10)。这个简单模型的主要误差源是阻抗在高频时的建立水平。注意,这些值一般是通过一系列仿真得出的,相当准确。

  

  图9: 显示的是转换器输入阻抗曲线的“实部”部分,它比较了经测量、数学和仿真方法得到的结果。

  

  图10: 显示的是转换器输入阻抗曲线的“虚部”部分,它比较了经测量、数学和仿真方法得到的结果。

  现在讨论图9和图10所示的测量结果。所有三条曲线并不完全重合,但很接近,这是因为某些测量误差总是存在的,而且仿真可能并未考虑到转换器的所有封装寄生效应。因此,一定程度的不一致是正常的。尽管如此,这些曲线在形状和轮廓方面都很相似,相当近似地给出了转换器的阻抗特性。

  注意,网络分析仪只能在其特征阻抗标准乘/除10倍的范围内提供可信的测量结果。如果网络分析仪的特征阻抗为50Ω,那么只能在5Ω到500Ω的范围内实现令人满意的测量。这也是数据手册中更愿意列出简单R||C值的原因之一。

  ADC输入阻抗总结

  了解转换器阻抗是信号链设计的一个重要内容。总之,若非真正需要,为什么要浪费大笔资金去购买昂贵的测试设备,或者费力去测量阻抗?不如使用数据手册提供的RC并联组合阻抗并稍加简单计算,这种获取转换器阻抗曲线的方法更快捷、更轻松。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭